Skip to main content

Electronic Structure Studies of Cuprate Superconductors

  • Chapter
Superconductivity and Applications
  • 203 Accesses

Abstract

Since the discovery of the cuprate superconductors 1 three years have gone and still the mechanism for superconductivity in this new class of materials is unclear. Strongly linked to this problem is the knowledge of the electronic structure of these materials, mainly at energies near the Fermi level. In this field a lot of experimental and theoretical work has been done bringing some insight into the problem. It seems to be established now that (maybe excluding the so-called electron conducting cuprates) superconductivity is connected with hole states on oxygen most probably in the CuO2 planes or ribbons. But there is a strong debate whether the cuprates can be described within a Fermi liquid theory or whether due to the strong onsite Coulomb interaction (U~8 eV) of the Cu d electrons a more local description is required. Band-structure calculations in the local density approximation (LDA)2 cannot describe the electronic structure of La2−xSrxCuO4: The band-structure calculation predicts a half-filled band and hence a metal, even in the case of the undoped La2CuO4 which is an antiferromagnetic insulator. XPS investigations 3 showed that the density-of-states (DOS) of the valence band is at lower energy by about 2 eV compared to LDA band-structure calculations. On the other hand, band-structure calculations predict rather well the topography of the Fermi surface as found by angle resolved photoemission (UPS) investigations on Bi2Sr2CaCu2O8 4. While the tools for band-structure calculations are rather elaborated giving excellent agreement with experimental results in “normal” cases it is not yet possible to calculate the electronic structure for the highly correlated systems such as La2CuO4. For the discussion of our results we may use a “band” picture 5 (Fig. 1) in which, due to the Coulomb interaction, the copper-oxygen band splits into two Cu3d Hubbard bands with an oxygen 2p band in between. In the case of the undoped La2CuO4 or YBa2Cu3O6 the oxygen band is filled. We will argue in this paper that upon doping holes are formed in this band. Another model for the electronic structure in the doped case may be a description where impurity states are created upon doping at or near the Fermi level in between the filled oxygen band and the upper Hubbard band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz and K.A. Müller,Z. Phys. B - Condensed Matter 64:189 (1986).

    Article  ADS  Google Scholar 

  2. L.F. Mattheiss, Phys. Rev. Lett. 58:1028 (1987).

    Article  Google Scholar 

  3. J.C. Fuggle, P.J.W. Weijs, R. Schoorl, G.A. Sawatzky, J. Fink, N. Nücker, P.J. Durham, and W.M. Temmerman, Phys. Rev. B 37:123 (1988).

    Article  ADS  Google Scholar 

  4. R. Manzke, T. Buslaps, R. Claessen, M. Skibowski and J. Fink, submitted to Physica Scripta

    Google Scholar 

  5. J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys. Rev. Lett. 55:418 (1985).

    Article  ADS  Google Scholar 

  6. J. Fink, Adv. Electron. Electron Phys. 75:121 (1989).

    Google Scholar 

  7. N. Nücker, J. Fink, B. Renker, D. Ewert, C. Politis, P.J.W. Weijs, and J.C. Fuggle, Z. Phys. B, 67:9 (1987)

    Article  ADS  Google Scholar 

  8. J. Fink, N. Nücker, H. Romberg, M. Alexander, S. Nakai, B. Scheerer, P. Adelmann, and D. Ewert, to be published in Physica C.

    Google Scholar 

  9. U. Neukirch, C.T. Simmons, P. Sladeczek, C. Laubschat, O. Strebel, G. Kaindl, and D.D. Sarma, Europhys. Lett. 5:567 (1988).

    Article  ADS  Google Scholar 

  10. C.-S. Jee, A. Kebede, D. Nichols, J.E. Crow, T. Mihalisin, G.H. Myer, I. Perez, R.E. Salomon, and P. Schlottmann, Solid State Commun. 69:379 (1989) and references therein

    Google Scholar 

  11. N. Nücker et al., to be published

    Google Scholar 

  12. N. Nücker, H. Romberg, X.X. Xi, J. Fink, B. Gegenheimer, and Z.X. Zhao, Phys. Rev. B 39:6619 (1989).

    Article  ADS  Google Scholar 

  13. M.S. Hybertsen and L.F. Mattheiss, Phys. Rev. Lett. 60:1661 (1988) H. Krakauer and W.E. Pickett, Phys. Rev. Lett. 60:1665 (1988).

    ADS  Google Scholar 

  14. A. Bianconi, A. Congiu Castellano, M. de Santis, P. Rudolf, P. Lagarde, A.M. Flank, and A. Marcelli, Solid State Commun. 63:1009 (1987).

    Article  ADS  Google Scholar 

  15. H. Romberg et al., to be published

    Google Scholar 

  16. J. Yu, S. Massidda, and A.J. Freeman, Physica C 152:273 (1988).

    Article  ADS  Google Scholar 

  17. R.V. Kasowski and W.Y. Hsu, Phys. Rev. B 38:6470 (1988).

    Article  ADS  Google Scholar 

  18. A. Bianconi, P. Castrucci, M. De Santis, A. Di Cicco, A. Fabrizi, A.M. Flank, P. Lagarde, K. Katayama-Yoshida, A. Kotani, A. Marcelli, Z.X. Zhao, and C. Politis, Modern Phys. Lett. B 11:1313 (1988)

    Google Scholar 

  19. J. Zaanen, M. Alouani, and O. Jepsen: Phys. Rev. B 40:837 (1989).

    Article  ADS  Google Scholar 

  20. N. Nücker, P. Adelmann, M. Alexander, H. Romberg, S. Nakai, J. Fink, H. Rietschel, G. Roth, H. Schmidt, and H. Spille, Z. Phys. B 75:421 (1989).

    Article  ADS  Google Scholar 

  21. M. Alexander et al., to be published

    Google Scholar 

  22. C.H. Chen, D.J. Werder, A.C.W.P. James, D.W. Murphy, S. Zahurak, R.M. Fleming, B. Batlogg, and L.F. Schneemeyer, preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nücker, N., Romberg, H., Alexander, M., Nakai, S., Adelmann, P., Fink, J. (1990). Electronic Structure Studies of Cuprate Superconductors. In: Kwok, H.S., Kao, YH., Shaw, D.T. (eds) Superconductivity and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7565-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7565-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7567-8

  • Online ISBN: 978-1-4684-7565-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics