Skip to main content

Interactions of Ethanol with Cyclic AMP

  • Chapter
Book cover Biochemical Pharmacology of Ethanol

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 56))

Abstract

The introduction of ethanol into a biological system affects its functions in two ways: the first is the effect of ethanol on excitable membranes and the second is the effect of ethanol metabolism on the intermediary metabolism of the system. Both of these primary effects are described in other chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robison, G.A., Butcher, R.W. and Sutherland, E.W.: Cyclic AMP. Academic Press, New York and London, 1971.

    Google Scholar 

  2. Perkins, J.P.: Adenyl cyclase. Adv. Cyclic Nucleot. Res., 3: 1–65, 1973.

    CAS  Google Scholar 

  3. Gorman, R.E. and Bitensky, M.W.: Selective activation by short chain alcohols of glucagon responsive adenyl cyclase in liver. Endocrinol., 87: 1075–1081, 1970.

    Article  CAS  Google Scholar 

  4. Greene, H.L., Herman, R.H. and Kraemer, S.: Stimulation of jejunal adenyl cyclase by ethanol. J. Lab. Clin. Med., 78: 336–342, 1971.

    PubMed  CAS  Google Scholar 

  5. Kuriyama, K. and Israel, M.A.: Effect of ethanol administration on cyclic 3’, 5’-adenosine monophosphate metabolism in brain. Biochem. Pharmacol., 22: 2919–2922, 1973.

    Article  PubMed  CAS  Google Scholar 

  6. Mashiter, K., Mashiter, G.D. and Field, J.B.: Effects of prostaglandin E, ethanol and TSH on the adenylate cyclase activity of beef thyroid plasma membranes and cyclic AMP content of dog thyroid slices. Endocrinology, 94: 370–376, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. Volicer, L. and Hynie, S.: Effects of catecholamines and angiotensin on cyclic AMP in rat aorta and tail artery. Eur. J. Pharmacol., 15: 214–220, 1971.

    Article  PubMed  CAS  Google Scholar 

  8. Tague, L.L. and Shanbour, L.L.: Alterations of gastric mucosal cAMP system in presence of ethanol. Tex. Rep. Biol. Med., 31: 103–104, 1973.

    Google Scholar 

  9. Satoh, K. and Ryan, K.J.: Adenyl cyclase in the human placenta. Biochim. Biophys. Acta, 244: 618–624, 1971.

    Article  CAS  Google Scholar 

  10. Keirns, J.J. Carritt, B., Freeman, J., Eisenstadt, J.M. and Bitensky, M.W.: Adenosine 3’,5’ cyclic monophosphate in Euglena gracilis. Life Sci, 13: 287–302, 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Kreiner, P.W., Keirns, J.J. and Bitensky, M.W.: A temperature-sensitive change in the energy of activation of hormone-stimulated hepatic adenyl cyclase. Proc. Nat. Acad. Sci. USA, 70: 1785–1789, 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Krishna, G., Weiss, B. and Brodie, B.B.: A simple, sensitive method for the assay of adenyl cyclase. J. Pharmacol. Exp. Ther., 163: 379–385, 1968.

    PubMed  CAS  Google Scholar 

  13. Petrack, B., Ma, D. and Sheppy, F.: Evidence for the formation of apparently new nucleotides by adipocyte ghosts. Fed. Proc.,32: 536, Abs., 1973.

    Google Scholar 

  14. Butcher, R.W. and Sutherland, E.W.: Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine. J. BioZ. Chem., 237: 1244–1250, 1962.

    CAS  Google Scholar 

  15. Thompson, W.J. and Appleman, M.M.: Characterization of cyclic nucleotide phophodiesterases of rat tissues. J. Biol. Chem., 246: 3145–3150, 1971.

    PubMed  CAS  Google Scholar 

  16. Cambell, M.T. and Oliver, I.V.: 3’,5’-cyclic nucleotide phosphodiesterases in rat tissues. Eur. J. Biochem., 28: 30–37, 1972.

    Article  Google Scholar 

  17. Appleman, M.M., Thompson, W.J. and Russell, T.R.: Cyclic nucleotide phosphodiesterases. In: Adv. Cyclic Nucleot. Res. 3, P. Greengard and G.A. Robison (eds.) Raven Press, New York, 65–98, 1973.

    Google Scholar 

  18. Brooker, G., Thomas, L.J. Jr. and Appleman, M.M.: The assay of adenosine 3’,5’-cyclic monophosphate and guanosine 3’,5’-cyclic monophosphate in biological materials by enzymatic radioisotope displacement. Biochemistry, 7: 4177–4181, 1968.

    Article  PubMed  CAS  Google Scholar 

  19. Huang, Y.C. and Kemp, R.G.: Properties of a phosphodiesterase with high affinity for adenosine 3’,5’-cyclic phosphate. Biochemistry, 10: 2278–2283, 1971.

    Article  PubMed  CAS  Google Scholar 

  20. Hitchcock, M.: Adenosine 3’,5’-cyclic monophosphate phosphodiesterase in guinea pig lung–properties and effect of adrenergic drugs. Biochem. Pharmacol., 22: 959–969, 1973.

    Article  PubMed  CAS  Google Scholar 

  21. Uzunov, P. and Weiss, B.: Separation of multiple molecular forms of cyclic adenosine 3’,5’-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis. Biochim. Biophys. Acta, 284: 220–226, 1972.

    PubMed  CAS  Google Scholar 

  22. De Robertis, E., Rodriguez, G., Arnaiz, De Lores and Alberici, M.: Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. Biol. Chem., 242: 34873493, 1967.

    Google Scholar 

  23. Beavo, J.A., Hardman, J.G. and Sutherland, E.W.: Hydrolysis of cyclic guanosine and adenosine 3’,5’-monophosphates by rat and bovine tissues. J. Biol. Chem., 245: 5649–5655, 1970.

    PubMed  CAS  Google Scholar 

  24. Chasin, M., Harris, D.N., Phillips, M.B. and Hess, S.M.: 1-ethyl-4-(isoprophylidenehydrazino)-1H-pyrazolo-(3,4,b)-pyri-dine-5-carboxylic acid, ethyl ester, hydrochloride (S020009)-a potent new inhibitor of cyclic 3’,5’-nucleotide phosphodiesterases. Biochem. Pharmacol., 21: 2443–2450, 1972.

    Article  PubMed  CAS  Google Scholar 

  25. Cheung, W.Y.: Cyclic 3’,5’-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J. Biol. Chem., 246: 2859–2869, 1971.

    PubMed  CAS  Google Scholar 

  26. Weiss, B.: Selective regulation of the multiple forms of cyclic nucleotide phosphodiesterase by norepinephrine and other agents. In: Frontiers in Catecholamine Research. E. Usdin and S. Snyder (eds.) pp. 327–333, Pergamon Press, Oxford, 1973.

    Google Scholar 

  27. Tague, L.L. and Shanbour, L.L.: Effects of ethanol on gastric mucosal adenosine 3’,5’-monophosphate (cAMP). Life Sci., 14: 1065–1073, 1974.

    Article  PubMed  CAS  Google Scholar 

  28. Mozsik, G.: Some feed-back mechanisms by drugs in the interrelationship between the active transport system and adenyl cyclase system localized in the cell membrane. Europ. J. Pharmacol., 7: 319–327, 1969.

    Article  CAS  Google Scholar 

  29. Luly, P., Barnabei, O. and Tria, E.: Hormonal control in vitro of plasma membrane-bound (Na+-K+)-ATPase of rat liver. Biochim. Biophys. Acta, 282: 447–452, 1972.

    Article  PubMed  CAS  Google Scholar 

  30. Dousa, T.: Adenosine 3’,5’-cyclophosphate and (Na+-K4) activated adenosine triphosphatase. Physiol. Bohemoslov., 19: 113–115, 1970.

    PubMed  CAS  Google Scholar 

  31. Lenaz, G., Parenti-Castelli, G., Monsigni, N. and Silvestrini, M.G.: Effect of alcohols on the functional organization of the inner mitochondrial membrane. Bioenergetics, 2: 119127, 1971.

    Google Scholar 

  32. Grisham, C.M. and Barnett, R.E.: The effects of long chain alcohols on membrane lipids and the (Na+-K+)-ATPase. Biochim. Biophys. Acta, 311: 417–422, 1973.

    Article  PubMed  CAS  Google Scholar 

  33. Järnefelt, J.: Lipid requirements of functional membrane structures as indicated by the reversible inactivation of (Na+-K+)-ATPase. Biochim. Biophys. Acta, 266: 91–96, 1972.

    Article  PubMed  Google Scholar 

  34. Israel, Y., Kalant, H., Le Blanc, E., Bernstein, J. and Salazar, I.: Changes in cation transport and (Na+-K+)-activated adenosine triphosphatase produced by chronic administration of ethanol. J. Pharmacol. Exp. Ther., 174: 330–336, 1970.

    PubMed  CAS  Google Scholar 

  35. Sun, A.Y. and Samorajski, T.: Effects of ethanol on the activity of adenosine triphosphatase and acetylcholinesterase in synaptosomes isolated from guinea-pig brain. J. Neurochem., 17: 1365.. 1372, 1972.

    Google Scholar 

  36. Israel, Y. and Salazar, I.: Inhibition of brain microsomal adenosine triphosphatases by general depressants. Arch. Biochem. and Biophys., 122: 310–317, 1967.

    Article  CAS  Google Scholar 

  37. Roach, M.K., Khan, M.M., Coffman, R., Pennington, W. and Davis, D.L.: Brain (Ne-e)) activated adenosine triphosphatase activity and neurotransmitter uptake in alcohol-dependent rats. Brain Res, 63: 323–329, 1973.

    Article  PubMed  CAS  Google Scholar 

  38. Knox, W.H., Perrin, R.G. and Sen, A.K.: Effect of chronic administration of ethanol on (Na+-K+)-activated ATPase activity in six areas of the cat brain. J. Neurochem., 19: 2881–2884, 1972.

    Article  PubMed  CAS  Google Scholar 

  39. Akera, T., Rech, R.H., Marquis, W.J., Tobin, T. and Brody, T.M.: Lack of relationship between brain (Na+-K+)-activated adenosine triphosphatase and the development of tolerance to ethanol in rats. J. Pharmacol. Exp. Ther., 185: 594–601, 1973.

    PubMed  CAS  Google Scholar 

  40. Israel, Y., Carmichael, F.J. and Macdonald, J.A.: Effects of ethanol on norepinephrine uptake and electrically stimulated release in brain tissue. Ann. N.Y. Acad. Sci., 215: 38–48, 1973.

    Article  PubMed  CAS  Google Scholar 

  41. Goldstein, D.B. and Israel, Y.: Effects of ethanol on mouse brain (Na -K)-activated adenosine triphosphatase. Life Sci. (II), 11: 957–963, 1972.

    CAS  Google Scholar 

  42. Israel, M.A. and Kuriyama, K.: Effect of in vivo ethanol administration on adenosinetriphosphatase activity of subcellular fraction of mouse brain and liver. Life Sci. (II), 10: 591–599, 1971.

    Article  CAS  Google Scholar 

  43. Rawat, A.K., Kuriyama, K. and Mose, J.: Metabolic consequences of ethanol oxidation in brains from mice chronically fed ethanol. J. Neurochem., 20: 23–33, 1973.

    Article  PubMed  CAS  Google Scholar 

  44. Hyams, D.E. and Isselbacher, K.J.: Prevention of fatty liver by administration of adenosine triphosphate. Nature, 204: 1196–1197, 1964.

    Article  PubMed  CAS  Google Scholar 

  45. French, S.W.: Effect of acute and chronic ethanol ingestion on rat liver ATP. Proc. Soc. Exp. BioZ. Med., 121: 68 1685, 1966.

    Google Scholar 

  46. Oura, E., Räihä, N.C.R. and Suomalainen, H.: Influence of some alcohols and narcotics on the adenosine phosphates in the liver of the mouse. Ann. Biol. Exptl. Med. Fenn., 45: 57–62, 1966.

    Google Scholar 

  47. Ammon, H.P.T. and Estler, C.J.: Influence of acute and chronic administration of alcohol on carbohydrate breakdown and energy metabolism in the liver. Nature, 216: 158–159, 1967.

    Article  PubMed  CAS  Google Scholar 

  48. Walker, J.E.C. and Gordon, E.R.: Biochemical aspects associated with an ethanol-induced fatty liver. Biochem. J., 119: 51 1516, 1970.

    Google Scholar 

  49. Marchetti, M., Ottani, V., Zanetti, P. and Puddu, P.: Aspects of lipid metabolism in ethanol-induced fatty liver. J. Nutr., 95: 607–611, 1968.

    PubMed  CAS  Google Scholar 

  50. Gordon, E.R. and Lough, J.: Ultrastructural and biochemical aspects during the regression of an ethanol-induced fatty liver. Lab. Invest., 26: 154–162, 1972.

    PubMed  CAS  Google Scholar 

  51. Grunnet, N. and Thieden, H.J.D.: The effect of ethanol concentration upon in vivo metabolite levels of rat liver. Life Sci. (II), 11: 983–993, 1972.

    Article  CAS  Google Scholar 

  52. Veech, R.L., Guynn, R. and Veloso, D.: The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J., 127: 387–397, 1972.

    PubMed  CAS  Google Scholar 

  53. Higgins, E.S. and Banks, W.L.: Cognate effects of ethanol, hydrazine and tissue regeneration on hepatic mitochondrial activities. Biochem. Pharmacol., 20: 1513–1524, 1971.

    Article  CAS  Google Scholar 

  54. Gajdos, A. and Gajdos-TÖrök, M.: Study of the effect of exogenous glucose on the excess formation of porphyrins and NADH in the liver of rats intoxicated with ethanol. Biochim. Biophys. Acta, 215: 550–553, 1970.

    Article  PubMed  CAS  Google Scholar 

  55. Griffaton, G., Baron, P. and Lowy, R.: Effets d’une administration aiguë d’ethanol et de fructose sur les teneurs en nucleotides adenyliques du foie de rat. Arch. Int. PhysioZ. Biochim., 79: 75–85, 1971.

    Article  CAS  Google Scholar 

  56. Pachinger, 0.M., Tillmanns, H., Mao, J.C., Fauvel, J.M. and Bing, R.J.: The effect of prolonged administration of ethanol on cardiac metabolism and performance in the dog. J. Clin. Invest., 52: 2690–2696, 1973.

    Article  Google Scholar 

  57. Carter, E.A. and Issellbacher, K.J.: Effect of ethanol on intestinal adenosine triphosphate content. Proc. Soc. Exp. Biol. Med., 142: 1171–1173, 1973.

    PubMed  CAS  Google Scholar 

  58. Tague, L.L. and Shanbour, L.L.: Effects of ethanol on possible transport mechanisms of the gastric mucosa. Gastroenterology, 66: 787, Abs., 1974.

    Google Scholar 

  59. Pliska, V., Glattfelder, A. and Birnbaumer, L.: Regulation of cAMP action on the cellular level: a compartment model. Experientia, 28: 750, 1972.

    Google Scholar 

  60. Tague, L.L. and Shanbour, L.: Effects of ethanol on Mg++ and Mg++, HCO3-stimulated ATPase, ATP and cyclic 3’,5’-adenosine monophosphate in canine gastric mucosa. J. Pharmaeol. Exp. Ther.,(In Press).

    Google Scholar 

  61. Solomon, N., Solomon, T.E., Jacobson, E.D. and Shanbour, L.L.: Direct effects of alcohol on in vivo and in vitro exocrine pancreatic secretion and metabolism. Am. J. Dig. Dis., 19: 253–260, 1974.

    Article  PubMed  CAS  Google Scholar 

  62. Sherr, H., Herman, R.H., Stifel, F.B. and Hagler, L.: Personal Communication.

    Google Scholar 

  63. Volicer, L.: Effect of ethanol on adenosine 3’,5’-monophosphate in rat tissues in vivo. Pharmacologist, 13: 218, 1971.

    Google Scholar 

  64. Stifel, F.B., Greene, H.L., Lufkin, E.G. and Herman, R.H.: Acute effects of oral and intravenous ethanol on rat hepatic enzyme activities. Fed. Proc., 33: 709, 1974.

    Google Scholar 

  65. Volicer, L. and Gold, B.I.: Effect of ethanol on cyclic AMP levels in the rat brain. Life Sci., 13: 269–280, 1973.

    Article  PubMed  CAS  Google Scholar 

  66. Sattin, A.: Increase in the content of adenosine 3’,5’-monophosphate in mouse forebrain during seizures and prevention of the increase by methylxanthines. J. Neurochem., 18: 1087–1096, 1971.

    Article  PubMed  CAS  Google Scholar 

  67. Paul, M.J., Pauk, G.L. and Ditzion, B.R.: The effect of centrally acting drugs on the concentration of brain adenosine 3’,5’-monophosphate. Pharmacology, 3: 148–154, 1970.

    Article  CAS  Google Scholar 

  68. Israel, M.A., Kimura, H. and Kuriyama, K.: Changes in activity and hormonal sensitivity of brain adenyl cyclase following chronic ethanol administration. Experientia, 28: 1322 1323, 1972.

    Google Scholar 

  69. Katz, L. and Tenenhouse, A.: The relation of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain; mechanism of stimulation of cyclic AMP accumulation by NaF. Br. J. Pharmaeol., 48: 505–515, 1973.

    CAS  Google Scholar 

  70. French, G.W. and Palmer, D.S.: Adrenergic supersensitivity during ethanol withdrawal in the rat. Res. Commun. Chem. PathoZ. Pharmacol., 6: 651–662, 1973.

    CAS  Google Scholar 

  71. Palmer, D.S., French, G.W. and Narad, M.E.: Increase in cAMP response to norepinephrine, histamine and serotonin by brain slices in ethanol dependent rats. Fed. Proc., 33: 710, 1974.

    Google Scholar 

  72. French, G.W., Palmer, D.S. and Narad, M.: Increase in cyclic AMP response to norepinephrine by liver mitochondria in ethanol-dependent rats. Am. J. PathoZ., 74: 67a, 1974.

    Google Scholar 

  73. Majchrowicz, E.: Effects of ethanol on liver metabolism. Adv. Exp. Med. Biol., 35: 79–104, 1973.

    CAS  Google Scholar 

  74. Mallow, G. and Bloch, J.L.: Role of hypophysis and adrenals in fatty infiltration of liver resulting from acute ethanol intoxication. Am. J. PhysioZ., 184: 29–34, 1956.

    Google Scholar 

  75. Maickel, R.P. and Brodie, B.B.: Interaction of drugs with the pituitary-adrenocortical system in the production of the fatty liver. Ann. N.Y. Acad. Sci., 104: 1059–1064, 1963.

    CAS  Google Scholar 

  76. Brodie, B.B. and Maickel, R.P.: Role of the sympathetic nervous system in drug-induced fatty liver. Ann. N.Y. Acad. Sci., 104: 1049–1058, 1963.

    CAS  Google Scholar 

  77. Claycomb, W.C. and Kilsheimer, G.S.: Effect of glucagon, adenosine-3’,5’-monophosphate and theophylline on free fatty acid release by rat liver slices and on tissue levels of coenzyme A esters. Endocrinology, 84: 1179, 1969.

    Article  PubMed  CAS  Google Scholar 

  78. Schapiro, R.H., Drummey, G.D., Yoshitaka, S. and Isselbacher, K.J.: Studies on the pathogenesis of the ethanol-induced fatty liver. II. Effect of ethanol on palmitate-1-C14 metabolism by the isolated perfused rat liver. J. Clin. Invest., 43: 1338–1347, 1964.

    Article  PubMed  CAS  Google Scholar 

  79. Heimberg, M., Weinstein, I. and Kohant, M.: The effects of glucagon, dibutyryl cyclic adenosine 3’,5’-monophosphate and concentration of free fatty acid on hepatic lipid metabolism. J. Biol. Chem., 244: 5131–5139, 1969.

    PubMed  CAS  Google Scholar 

  80. Erwin, V.G., Anderson, A.D. and Eide, G.J.: Enhancement of fatty acid oxidation and medium-chain fatty acyl coenzyme A synthetase by adenine nucleotides in rat heart homogenates. J. Pharm. Sci., 60: 77–80, 1971.

    Article  PubMed  CAS  Google Scholar 

  81. Poggi, M. and DiLuzio, N.R.: The role of liver and adipose tissue in the pathogenesis of the ethanol-induced fatty liver. J. Lipid Res., 5: 437–441, 1964.

    PubMed  CAS  Google Scholar 

  82. Reboucas, G. and Isselbacher, K.J.: Studies on the pathogenesis of the ethanol-induced fatty liver: I. Synthesis and oxidation of fatty acids by the liver. J. Clin. Invest., 40: 1355–1362, 1961.

    Article  PubMed  CAS  Google Scholar 

  83. Fex, G. and Olivecrona, T.: Role of uptake and oxidation of plasma free fatty acids by the liver in the development of the ethanol-induced fatty liver. Acta Physiol. Scand., 75: 78–81, 1969.

    Article  PubMed  CAS  Google Scholar 

  84. Kakiuchi, S. and Rall, T.W.: The influence of chemical agents on the accumulation of adenosine 3’,5’-phosphate in slices of rabbit cerebellum. Mol. Pharmacol., 4: 367–378, 1968.

    PubMed  CAS  Google Scholar 

  85. Kebabian, J.W., Petzold, G.L. and Greengard, P.: Dopamine-sensitive asenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Nat. Acad. Sci. USA., 69: 2145–2149, 1972.

    Article  PubMed  CAS  Google Scholar 

  86. Chou, W.S., Ho, A.K.G. and Lo, H.H.: Effect of acute and chronic morphine and norepinephrine on brain adenyl cyclase activity. Proc. West. Pharmacol. Soc., 14: 42–46, 1971.

    CAS  Google Scholar 

  87. Burkard, W.P.: Catecholamine induced increase of cyclic adenosine 3’,5’-monophosphate in rat brain in vivo. J. Neurochem., 19: 2615–2619, 1972.

    Article  CAS  Google Scholar 

  88. Bloom, F.W., Hoffer, B.J., Battenberg, E.R., Siggins, G.R., Steiner, A.L., Parker, C.W. and Wedner, H.J.: Adenosine 3’,5’-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence. Science, 177: 436–438, 1972.

    Article  PubMed  CAS  Google Scholar 

  89. Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand., (Suppl.) 367, 1971.

    Google Scholar 

  90. Bloom, F.E., Hoffer, B.J. and Siggins, G.R.: Norepinephrine mediated cerebellar synapses: A model system for neuropsychopharmacology. BioZ. Psychiatry, 4: 157–177, 1972.

    CAS  Google Scholar 

  91. Siggins, G.R., Oliver, A.P., Hoffer, B.J. and Bloom, F.E.: Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells. Science, 171: 192–194, 1971.

    Article  PubMed  CAS  Google Scholar 

  92. Godfraind, J.M. and Pumain, R.: Cyclic adenosine monophosphate and norepinephrine: Effect on Purkinje cells in rat cerebellar cortex. Science, 174: 1257–1258, 1971.

    Article  PubMed  CAS  Google Scholar 

  93. Lake, N. and Jordan, L.M.: Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science, 183: 663–664, 1974.

    Article  PubMed  CAS  Google Scholar 

  94. Greengard, P., McAfee, D.A. and Kebabian, J.W.: On the mecha-nism of action of cyclic AMP and its role in synaptic transmission. Adv. Cyclic Nucleot. Res., 1: 337–355, 1972.

    CAS  Google Scholar 

  95. McAfee, D.A. and Greengard, P.: Adenosine 3’,5’-monophosphate: Electrophysiological evidence for a role in synaptic transmission. Science, 178: 310–312, 1972.

    Article  PubMed  CAS  Google Scholar 

  96. DiPerri, R., Dravid, A., Schweigerdt, A. and Himwich, H.E.: Effects of alcohol on evoked potentials of various parts of the central nervous system of cat. Quart. J. Stud. Ale., 29: 20–37, 1968.

    Google Scholar 

  97. Allsop, J. and Turner, B.: Cerebellar degeneration associated with chronic alcoholism. J. Neurol. Sci., 3: 238–258, 1966.

    Article  PubMed  CAS  Google Scholar 

  98. Eidelberg, E., Bond, M.L. and Kelter, A.: Effects of alcohol on cerebellar and vestibular neurones. Arch. Int. Pharmacodyn. Ther., 192: 213–219, 1971.

    PubMed  CAS  Google Scholar 

  99. Blum, K.: Effects of catecholamine synthesis inhibition on ethanol narcosis in mice. Curr. Ther. Res., 14: 324–329, 1972.

    PubMed  CAS  Google Scholar 

  100. Smith, A.A., Hayashida, K. and Kim, Y.: Inhibition by propranolol of ethanol-induced narcosis. J. Pharm. Pharmacol., 22: 644–645, 1970.

    Article  PubMed  CAS  Google Scholar 

  101. Hayashida, K. and Smith, A.A.: Reversal by sotalol of the respiratory depression induced in mice by ethanol. J. Pharm. Pharmacol., 23: 718–719, 1971.

    Article  PubMed  CAS  Google Scholar 

  102. Allen, L.E., Ferguson, H.C. and McKinney, G.R.: A survey of selected drugs on behavior performance in ethanol-treated rats. Eur. J. Pharmacol., 15: 371–374, 1971.

    Article  PubMed  CAS  Google Scholar 

  103. Hungen, K.V. and Roberts, S.: Adenylate cyclase receptors for adrenergic transmitters in rat cerebral cortex. Eur. J. Biochem., 36: 391–401, 1973.

    Article  Google Scholar 

  104. Stone, C.A. and Porter, C.C.: Biochemistry and pharmacology of methyldopa and some related structures. Adv. Drug. Res., 4: 71–93, 1967.

    PubMed  CAS  Google Scholar 

  105. Goldman, V., Comerford, B., Hughes, D. and Nyberg, G.: Effect of 13-adrenergic blockade and alcohol on simulated car driving. Nature, 224: 1175–1178, 1969.

    Article  PubMed  CAS  Google Scholar 

  106. Mendelson, J.H., Rossi, A.M., Bernstein, J.G. and Kuehnle, J.: Effects of propranolol on behavior of alcohol addicts following acute ethanol intake. (submitted for publication).

    Google Scholar 

  107. Noble, E.P., Parker, E., Alkana, R., Cohen, H. and Birch, H.: Propranolol-ethanol interaction in man. Fed. Proc., 32: 724, Abs., 1973.

    Google Scholar 

  108. Cohn, M.L., Kraynack, B., Cohn, M. and Scattaregia, F.: Interaction of cyclic AMP with neuropharmacologic depressant agents. Fed. Proc., 32: 680, Abs., 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Volicer, L., Gold, B.I. (1975). Interactions of Ethanol with Cyclic AMP. In: Majchrowicz, E. (eds) Biochemical Pharmacology of Ethanol. Advances in Experimental Medicine and Biology, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7529-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7529-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7531-9

  • Online ISBN: 978-1-4684-7529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics