Skip to main content

The Enzymology of Proanthocyanidin Biosynthesis

  • Chapter
Chemistry and Significance of Condensed Tannins

Abstract

The cell-free enzymology of the biosynthesis of the 2,3-trans forms of flavan-3-ols and the oligomeric 2,3-trans proanthocyanidins is now known except for the final condensation step to the oligomers. The individual enzymic steps at the C-15 level are described. A speculative model to explore the origin of the still unknown 2,3-cis pathway and its relationship to the 2,3-trans pathway is presented. This model accounts for the radioactive phenylalanine feeding experiments published by various laboratories. The pathway is also discussed in terms of the regulation of proanthocyanidin biosynthesis in gymnosperms, especially in Douglas-fir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haslam, E. Vegetable tannins. In: Swain, T.; Harbonne, J.B.; VanSumere, C. F. (eds.) Biochemistry of Plant Phenolics (Recent Advances in Phytochemistry). Plenum Publishing Co., New York, 12:475 (1979).

    Google Scholar 

  2. Freudenberg, K.; Weinges, K. Catechins and flavonoid tannins. In: Geissman, T.A. (ed.) The Chemistry of Flavonoid Compounds. MacMillin, New York, p. 197 (1962)

    Google Scholar 

  3. Stafford, H.A.; Kreitlow, K.S.; Lester, H.H. Comparison of proanthocyanidins of Pseudotsuga menziesii Franco, and Ribes sanguineum Pursh. Plant Physiol. 82: 1132 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. Stafford, H.A.; Smith, E.C.; Weider, R.M. The development of proanthocyanidins (condensed tannins) and other phenolics in bark of Pseudotsuga menziesii Franco. Can. J. Bot. (in press).

    Google Scholar 

  5. Stafford, H.A.; Lester, H.H. Proanthocyanidins (condensed tannins) in green cell suspension cultures of Douglas fir compared with those in strawberry and avocado leaves by means of C-18-reversed phase chromatography. Plant Physiol. 66: 1085 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. Stafford, H.A.; Lester H.H. Proanthocyanidins and potential precursors in needles of Douglas-fir and in cell suspension cultures derived from seedling shoot tissues. Plant Physiol. 68: 1035 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. Grisebach, H. Biosynthesis of flavonoids. In: Higuchi, T. (ed.) Biosynthesis and Biodegradation of Wood Components. Academic Press, New York. p. 291 (1985).

    Google Scholar 

  8. Heller, W.; Forkmann, G. Biosynthesis. In: Harborne, J.B. (ed.) The Flavonoids, Advances in Research Since 1980. Academic Press, New York, p. 399 (1988).

    Google Scholar 

  9. Ellis, C J; Foo, L.Y.; Porter, L.J. Enantiomerism: a characteristic of the proanthocyanidins of the monocotyledonae. Phytochemistry 22: 483 (1983).

    Article  CAS  Google Scholar 

  10. Neish, A.C. Major pathways of biosynthesis of phenols. In: Harborne, J.B. (ed.) Biochemistry of Phenolic Compounds. Academic Press, New York, p. 295 (1964).

    Google Scholar 

  11. Heller, W.; Hahlbrock, K. Highly purified ‘flavanone’ synthase from parsley catalyzes the formation of naringenin chalcone. Arch. Biochem. Biophy. 200: 617 (1980).

    Article  CAS  Google Scholar 

  12. Hahlbrock, K.; Zilg, H.; Grisebach, H. Stereochemistry of the enzymatic cyclization of 4,2’,4’-trihydroxychalcone to 7,4-dihydroxyflavanone by isomerases from mung bean seedlings. Ear. J. Biochem. 15: 13, (1970).

    Article  CAS  Google Scholar 

  13. Zapromotov, M.N.; Grisebach, H. Dihydrokaempferol as precursor of catechins in the tea plant. Z. Naturforsch. 28c, 113, (1973).

    Google Scholar 

  14. Jacques D.; Opie, C.T.; Porter, L.J.; Haslam, E. Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyanidin in plants. J. Chem. Soc. Perkin Trans. 1: 1637 (1977).

    Article  Google Scholar 

  15. Stafford, H.A.; Shimamoto, M.; Lester, H.H. Incorporation of [14C] phenylalanine into flavan-3-ols and procyanidins in cell suspension cultures of Douglas fir. Plant Physiol. 69: 1055 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. Stafford, H.A. Enzymic regulation of procyanidin biosynthesis: lack of flav-3-en-3-ol intermediate. Phytochemistry 22: 2643 (1983).

    Article  CAS  Google Scholar 

  17. Foo, L.Y. Configuration and conformation of dihydroflavonols from Acacia melanoxylon. Phytochemistry 26: 813 (1987).

    Article  CAS  Google Scholar 

  18. Jensen, R. Tyrosine and phenylalanine biosynthesis: relationship between alternative pathways, regulation and subcellular location. In: Conn, E.E. (ed.) The Shikimic Acid Pathway. Recent Advances in Phytochemistry. Plenum Publishing Co., New York, 20:57 (1986).

    Google Scholar 

  19. Jahnen, W.; Hahlbrock, K. Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings. Planta 173: 453 (1988).

    Article  CAS  Google Scholar 

  20. Knoblock, K.; Hahlbrock, K. 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinim hortsense. Hoffm. Partial purification, substrate specificity, and further properties. Arch. Biochem. Biophys. 184: 237 (1977).

    Article  Google Scholar 

  21. Grand, C.; Boudet, A.; Boudet, A.M. Isoenzymes of hydroxycinnamate:CoA ligase from poplar stems: properties and tissue distribution. Planta 158: 225 (1983).

    Article  CAS  Google Scholar 

  22. Stumpf, P.K. Biosynthesis of saturated fatty acids. In: Stumpf, P.K.; Conn, E.E. (eds.) The Biochemistry of Plants. Academic Press, New York, 9:121 (1981).

    Google Scholar 

  23. Finlayson, S.A.; Dennis, D.T. Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis. Arch. Biochem. Biophys. 225: 586 (1983).

    Article  CAS  Google Scholar 

  24. Beerhues, L.; Wiermann, R. Chalcone synthases from spinach (Spinacea oleracea L.I.) Purification, peptide patterns, and immunological properties of different forms. Planta 173: 532 (1988).

    Article  CAS  Google Scholar 

  25. Beerhues, L.: Robenek, H.; Wiermann, R. Chalcone synthases from spinach (Spinacea oleracea L.). II. Immunofluorescence and immunogold localization. Planta 173: 544 (1988).

    Article  CAS  Google Scholar 

  26. Koes, R.E.; Spelt, C.E. Mol. J.N.M.; Gerata, G.M. The chalcone synthase multigene family of Petunia hybrida (V30): sequence homology, chromasomal localization and evolutionary aspects. Plant Molec. Bio. 10: 159 (1987).

    Article  CAS  Google Scholar 

  27. Ryder, T.B.; Hedrick, S.A.; Bell, J.N.; Liang, X.; Clouse, S.D.; Lamb, C.J. Organization and differential activation of gene family encoding the plant defense enzyme chalcone synthase in Phaseous vulgaris. Mol. Gen. Genet 210: 219 (1987).

    Article  CAS  Google Scholar 

  28. Hrazdina, G.; Zobel, A.M.; Hoch, H.C. Biochemical, immunological, and irnmunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. 84: 8966 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. Ayabe, S.; Udagawa, A.; Furuya, T. NAD(P)H-dependent 6’-deoxychalcone synthase activity in Glycyrrhiza cells induced by yeast extract. Arch. Biochem. Biophys. 261: 458 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. Welle, R.; Grisebach, H. Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6’-deoxychalcone. FEBS Lett. 236: 221 (1988).

    Article  CAS  Google Scholar 

  31. Dixon, R.A.; Blyden, E.R.; Robbins, M.P.; Van Tunen, A.J.; Mol, J.N. Comparative biochemistry of chalcone isomerases. Phytochemistry 27: 2801 (1988).

    CAS  Google Scholar 

  32. van Tunen, A.J.; Koes, R.E.; Spelt, C.E.; van der Krol, A.R.; Stuitje, R.; Mol, N.M. Cloning of two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J. 7: 1257 (1988).

    PubMed  Google Scholar 

  33. Bednar, R.A.; Hadcock, J.R. Purification and characterization of chalcone isomerase from soybeans. J. Biol. Chem. 263: 9582 (1988).

    PubMed  CAS  Google Scholar 

  34. Haslam, E. Secondary metabolism - fact and fiction. Natural Product Reports 3: 217 (1986).

    Article  CAS  Google Scholar 

  35. Forkman, G.; Heller, W.; Grisebach, H. Anthocyanin biosynthesis of Matthiala incana flavanone 3- and flavonoid 3’-hydroxylases. Z. Naturforsch. 35c: 691 (1980).

    Google Scholar 

  36. Stotz, G.; Forkmann, G. Hydroxylation of the B-ring of flavonoids in the 3’- and 5’-position with extracts from flowers of Verbena hybrida. Z. Naturforsch. 37c: 19 (1982).

    Google Scholar 

  37. Britsch L.; Grisebach, H. Purfication and characterization of (2S)- flavanone-3-hydroxylase from Petunia hybrida. Ear. J. Biochem. 156: 569 (1986).

    Article  CAS  Google Scholar 

  38. Stotz, G.; de Vlaming, P.; Wiering, H.; Schram, A.W.; Forkmann, G. Genetic and biochemical studies on flavonoid 3’-hydroxylation in flowers of Petunia hybrida. Theor. App. Gen. 70: 300 (1985).

    CAS  Google Scholar 

  39. Stafford, H.A.; Lester, H.H. Enzymic and non-enzymic reduction of (+)-dihydroquercetin to its 3,4-diol. Plant Physiol. 70: 695 (1982).

    Article  PubMed  CAS  Google Scholar 

  40. Stafford, H.A.; Lester, H.H. Flavan-3-ol biosynthesis, The conversion of (+)-dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (+)-gallocatechin by reductases extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii. Plant Physiol. 78: 791 (1985).

    CAS  Google Scholar 

  41. Botha, J.J.; Ferreira, D.; Roux, D. Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and [4,8]-biflavanoids. J. Chem. Soc. Perkin Trans. 1:1235 (1981).

    Google Scholar 

  42. Porter, L.J.; Foo, L.Y. Leucocyanidin: synthesis and properties of (2R,3S,4R)-(+)-3,4,5,7,3’,4’-hexahydroxyflavan. Phytochemistry 21: 2947 (1982).

    Article  CAS  Google Scholar 

  43. Kristiansen, K.N. Biosynthesis of proanthocyanidins in barley: genetic control of the conversion of dihydroquercetin to catechin and procyanidins. Carlsberg Res. Commun. 49: 503 (1984).

    Article  CAS  Google Scholar 

  44. Kristiansen, K.N. Conversion of (+)- dihydroquercetin to (+)-2,3-trans-3,4-cis-leucoyanidin and (+)-catechin with an enzyme extract from maturing grains of barley. Carlsberg Res. Commun. 51: 51 (1986).

    Article  Google Scholar 

  45. Stafford, H.A.; Lester, H.H.; Porter, L.J. Chemical and enzymatic synthesis of monomeric procyanidins (leucocyanidins or 3’,4’,5’,7- tetrahydroxyflavan-3,4-diols) from (2R, 3R)dihydroquercetin. Phytochemistry 24: 333 (1985).

    Article  CAS  Google Scholar 

  46. Ishikura, N.; Murakami, H.; Fujii, Y. Conversion of (+)-dihydroquercetin to 3,4-cis-leucocyanidin by a reductase extracted from cell suspension cultures of Cryptomeria japonica. Plant Cell Physiol. 29: 795 (1988).

    CAS  Google Scholar 

  47. Reddy, A.R.; L Britsch, F.; Salamini, F.; Saedler, H.; Rohde, W. The Al (anthocyanin-1) locus in Zea mays encodes dihydroquercetin reductase. Plant Sci. 52: 7 (1987).

    Article  CAS  Google Scholar 

  48. Fischer, D.; Stich, K.; Britsch, L.; Grisebach, H. Purification and characterization of (+)dihydroflavanol 4-reductase from flowers of Dahlia variabilis. Arch. Biochm. Biophys. 264: 40 (1988).

    Article  CAS  Google Scholar 

  49. Heller, W.; Forkman, G.; Britsch, L.; Grisebach, H. Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthioila incana and its role in anthocyanin biosynthesis. Planta 165: 284 (1985).

    Article  CAS  Google Scholar 

  50. Schwarz-Sommer, Z.; Shepherd, N.; Tacke, E.; Gierl, A.; Rohde, W.; Leclercq, L.; Mattes, M.; Berndtgen, R.; Peterson, P.A.; Saedler, H. Influence of transposable elements on the structure and function of the Al gene of Zea mays.. EMBO J. 6: 287 (1987).

    CAS  Google Scholar 

  51. Meyer, P.; Heidmann, I.; Forkmann, G.; Saedler, H. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. Guyer, R.; Magnoloto, D.; Self, R. Glucosylated flavanoids and other phenolic compounds from sorghum. Phytochemistry 25: 1431 (1986).

    Article  Google Scholar 

  53. Porter, L.J. Flavans and proanthocyanidins. In: Harborne, J.B. (ed.) The Flavonoids, Advances in Research Since 1980. Chapman and Hall Ltd., London, pp. 21–62 (1988).

    Google Scholar 

  54. Stafford, H.A.; Lester, H.H. Flavan-3-o1 biosynthesis: the conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductase extracted from cell suspension cultures of Douglas-fir. Plant Physiol. 76: 184 (1984).

    Article  PubMed  CAS  Google Scholar 

  55. Nonaka, G.; Goto, Y.; Kinjo, J.; Nohara, T.; Nishioka, I. Tannins and related compounds. LII. Studies on the constituents of leaves of Thujopsis dolabrata Sieb. et Zucc. Chem. Pharm. Bull. 35: 1105 (1987).

    Article  CAS  Google Scholar 

  56. Lundgren, L.N.; Theander, O. Cis-and trans-dihydroquercetin glucosides from needles of Pinus sylvestris. Phytochemistry 27: 829 (1988).

    CAS  Google Scholar 

  57. Porter, L.J. Condensed tannins. In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag, New York, (in press).

    Google Scholar 

  58. Roux, D.G.; Ferreira, D. a-Hydroxychalcones as intermediates in flavonoid biogenesis: the significance of recent chemical analogies. Phytochemistry 13: 2039 (1974).

    Article  CAS  Google Scholar 

  59. Roux, D.G.; Ferreira, D. Rationalization of divergent condensation sequences in flavanoid oligomerization. Ann. Proc. Phytochem. Soc. Ear. 25: 221 (1985).

    Google Scholar 

  60. Gupta, R.K.; Haslam, E. Plant proanthocyanidins. Part 7. Prodelphinidins from Pinus sylvestris. J. Chem. Soc. Perkin Trans. 1: 1148 (1981).

    Article  Google Scholar 

  61. Delcour, J.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J. Chem. Soc. Perkin Trans. 1: 1711 (1983).

    Article  Google Scholar 

  62. Hemingway, R.W.; Laks, P.E. Condensed tannins: a proposed route to 2R, 3R-(2,3-cis)proanthocyanidins. J. Chem. Soc. Chem. Commun.: 746 (1985).

    Google Scholar 

  63. Attwood, M.R.; Brown, B.R.; Lisseter, S.G. Spectral evidence for the formation of quinone methide intermediates from 5- and 7- hydroxyflavonoids. J. Chem. Soc. Chem. Commun.: 177 (1984).

    Google Scholar 

  64. Stafford, H.A. Proanthocyanidins and the lignin connection. Phytochemistry 27: 1 (1988).

    Article  CAS  Google Scholar 

  65. Hemingway, R.W. Biflavonoids and proanthocyanidins. In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag, New York (in press).

    Google Scholar 

  66. Porter, L.J.; Foo, L.Y.; Furneaux, R.H. Isolation of three naturally occurring 0-ß-glucopyranosides of proanthocyanidin polymers. Phytochemistry 24: 567 (1985).

    Article  CAS  Google Scholar 

  67. Foo, L.Y.; Karchesy, J.J. Procyanidin dimers and trimers from Douglas-fir inner bark. Phytochemistry (in press).

    Google Scholar 

  68. Foo, L.Y.; Karchesy, J.J. Procyanidin polymers of Douglas-fir bark: structure from degration with phlomglucinol. Phytochemistry (submitted).

    Google Scholar 

  69. Hrazdina, G; Wagner, G.J. Compartmentation of plant phenolic compounds: sites of synthesis and accumulation. Ann. Proc. Phytochem. Europe 25: 119 (1985).

    Google Scholar 

  70. Ureta, T. The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Current Topics in Enzyme Regulation 13: 233 (1978).

    CAS  Google Scholar 

  71. Friedrich, P. Supramolecular Enzyme Organization. Pergamon Press, Oxford (1984).

    Google Scholar 

  72. Welch, G.R.; Keleti, T. Is cell metabolism controlled by a `molecular democracy’ or by a `supramolecular socialism’? TIBS 12: 216 (1987).

    Google Scholar 

  73. Srivasta, D.K.; Bernhard, S.A. Metabolite transfer via enzyme-enzyme complexes. Science 234: 1081 (1986).

    Article  Google Scholar 

  74. Halbrock, K. Flavonoids. In: The Biochemistry of Plants. 7:425 (1981).

    Google Scholar 

  75. Santamour, F.S. Anthocyanidins of conelets in the Pinaceae. Forest Science 12: 429 (1966).

    Google Scholar 

  76. Ching, K.K.; Aft, H.; Highley, T. Color variation in strobili of Douglas-fir. In: Proc. Western Forest Genetics Assoc. Olympia, WA, December 6–7. 37. (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Stafford, H.A. (1989). The Enzymology of Proanthocyanidin Biosynthesis. In: Hemingway, R.W., Karchesy, J.J., Branham, S.J. (eds) Chemistry and Significance of Condensed Tannins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7511-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7511-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7513-5

  • Online ISBN: 978-1-4684-7511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics