Skip to main content

Tannin-Insect Interactions

  • Chapter

Abstract

Significant evidence exists that dietary tannin can reduce growth and fecundity of some insect species. However, few studies have identified clear physiological or toxicological impacts of tannins on insect herbivores; some have suggested that tannins are positive nutritional factors. Insect species that feed on tanniniferous plant tissues often appear able to tolerate dietary tannins and may even be stimulated to feed by their presence. Alkaline midgut pH, surfactants, and the peritrophic membrane all may help these species tolerate moderate tannin concentrations in the diet. Reduced growth of adapted species at high tannin concentration may represent metabolic costs, not direct tannin effects. New evidence suggests an important impact of dietary tannin on microbial enemies of insects. The study of tannin-insect interactions has been hampered by poor communication between chemists and biologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zucker, W.V. Tannins: does structure determine function? An ecological perspective. Amer. Nat. 121: 335 (1983).

    Article  CAS  Google Scholar 

  2. Bate-Smith, E.D.; Swain, T. Flavonoid compounds. In: Florkin, M.; Mason, H.C. (eds.) Comparative Biochemistry, Vol. III, Academic Press, New York, (1962).

    Google Scholar 

  3. Feeny, P. Effect of oak leaf tannins on larval growth of the winter moth Operopthera bru-mata. J. Insect Physiol. 14: 805 (1968).

    Article  CAS  Google Scholar 

  4. Feeny, P. Seasonal changes in the oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565 (1970).

    Article  Google Scholar 

  5. Feeny, P. Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin. Phytochemistry 8: 2119 (1969).

    Article  CAS  Google Scholar 

  6. Bate-Smith, E.C. Haemanalysis of tannins: the concept of relative astringency. Phytochemistry 12: 907 (1973).

    Article  CAS  Google Scholar 

  7. Chang, S.I.; Fuller, H.L. Effect of tannin content of grain sorghums on their feeding value for growing chicks. Poultry Sci. 43: 39 (1964).

    Google Scholar 

  8. Potter, D.K.; Fuller, H.L. Metabolic fate of dietary tannins in chickens. J. Nutrition 96: 187 (1968).

    CAS  Google Scholar 

  9. Butler, L.G.; Rogler, J.C.; Mehansho, H.; Carlson, D.M. Dietary effects of tannins. In: Cody, V.; Harborne, J.B.; Middleton, E. (eds.) Biochemical Pharamocological, and Structure-Activity Relationships, A. R. Liss Inc., New York, (1986).

    Google Scholar 

  10. Singleton, V.L.; Kratzer, F.H. Plant phenolics. In: “Toxicants Occurring Naturally in Foods”. Nat. Acad. Sci., Washington, DC (1973).

    Google Scholar 

  11. Rossiter, M.C.; Schultz, J.C.; Baldwin, I.T. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69: 267 (1988).

    Article  CAS  Google Scholar 

  12. Rossiter, M.C.; Schultz, J.C. (unpublished results).

    Google Scholar 

  13. Klocke, J.A.; Chan, B.G. Effects of cotton condensed tannin on feeding and digestion in the cotton pest. Heliothis zea, J. Insect Physiol. 28: 911 (1982).

    Article  CAS  Google Scholar 

  14. Sharma, H.C.; Agarwal, R.A. Effect of some antibiotic compounds in Gossypiumon the post-embryonic development of spotted bollworm (Earias vittella). Ent. Exp. and Appl. 31: 255 (1982).

    Article  Google Scholar 

  15. Hedin, P.A.; Jenkins, J.N.; Collura, D.H.; White, W.H.; Parrott, W.L. Multiple factors in cotton contributing to resistance to the tobacco budworm. Heliothis virescens F. A CS Symp 208: 347 (1983).

    CAS  Google Scholar 

  16. Bernays, E.A. Plant tannins and insect herbivores: an appraisal. Ecol. Entomol. 6: 353 (1981).

    Article  Google Scholar 

  17. Bernays, E.A. Tannins: an alternative viewpoint. Ent. Exp. and Appl. 24: 44 (1978).

    Article  Google Scholar 

  18. Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229 (1968).

    Article  Google Scholar 

  19. Scriber, J.M.; Slansky, F. The nutritional ecology of immature insects. Ann. Rev. Entomol. 26: 183 (1981).

    Article  Google Scholar 

  20. Bernays, E.A.; Chamberlain, D.J.; Leather, E.M. Tolerance of acridids to ingested condensed tannin. J. Chem. Ecol. 7: 247 (1981).

    Article  CAS  Google Scholar 

  21. Berenbaum, M.R. Effects of tannins on growth and digestion in two species of papilionoids. Ent. Exp. and Appl. 34: 245 (1983).

    Article  CAS  Google Scholar 

  22. Manuwoto, S.; Scriber, J.M.; Hsia, M.T.; Sunarjo, P. Antibiosis/antixenosis in tulip tree and quaking aspen leaves against the polyphagous southern armyworm. Spodoptera eridania, Oecologia. 67: 1 (1985).

    Article  Google Scholar 

  23. Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256: 4494 (1981).

    PubMed  CAS  Google Scholar 

  24. Steinly, B.A.; Berenbaum, M. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus. Ent. Exp. and Appl. 39: 3 (1985).

    Article  Google Scholar 

  25. Bernays, E.A.; Chamberlain, D.J.; McCarthy, P. The differential effects of ingested tannic acid on different species of Acridoidea. Ent. Exp. and Appl. 28: 158 (1980).

    Article  CAS  Google Scholar 

  26. Brandt, C.R.; Adang, M.J.; Spence, K.D. The periotrophic membrane: ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata. J. Inv. Path. 32: 12 (1978).

    Article  Google Scholar 

  27. Cadman, C.H. Inhibition of plant virus infection by tannins. In: Pridham, J.D. (ed.) Phenolics in Plants in Health and Disease, Pergamon Press, New York (1960).

    Google Scholar 

  28. Mink, G.I.; Huisman, O.; Saksena, K.N. Oxidative inactivation of tulare apple mosaic virus. Virology 29: 437 (1966).

    Article  PubMed  CAS  Google Scholar 

  29. Mole, S.; Waterman, P.G. Tannins as antifeedants to mammalian herbivores - still an open question? ACS Symp. 250: 572 (1987).

    Article  Google Scholar 

  30. Tipton, K.W.; Floyd, E.H.; Marshall, J.C.; McDevitt, J.B. Resistance of certain grain sorghum hybrids to bird damage in Louisiana. Agron. J. 62: 211 (1970).

    Article  Google Scholar 

  31. Bettolo, G.B.M.; Marta, M.; Pomponi, M.; Bernays, E.A. Flavan oxygenation pattern and insect feeding deterrence. Biochem. Syst. Ecol. 14: 249 (1986).

    Article  Google Scholar 

  32. Barbosa, P.; Krischik, V.A. Influence of alkaloids on feeding preference of eastern deciduous trees by the gypsy moth. Lymantria dispar L. Amer. Nat. 130: 53 (1987).

    Article  CAS  Google Scholar 

  33. van Gornitz, K. Frassauslosende stoffe fur polyphagen holzgewachsen fressenden raupen. Verhandl. Deutchen Gesell. fur Ange. Entomol. 6: 38 (1954).

    Google Scholar 

  34. Grevillius, A.Y. Zur Kenntnis der Biologie des goldafters (Euproctis chrysorrhoea L.) and der durch denselben verusachten Beshadigungen. Bolan. Zentral. 18: 222 (1905).

    Google Scholar 

  35. Glyphis, J.P. “Herbivory and Tannin Polyphenols in Mediterranean Ecosystems”, PhD. Dissertation, Faculty of Science, University of Cape Town, South Africa, (1985).

    Google Scholar 

  36. Schultz, J.C. Impact of invariable plant chemical defenses on insect susceptibility to parasites predators, and diseases. ACS Symp. 208: 267 (1983).

    Google Scholar 

  37. Faeth, S.H.; Bultman. Interacting effects of increased tannin levels on leaf-mining insects. Ent. Exp. and Appl. 40: 297 (1986).

    Article  CAS  Google Scholar 

  38. Perrins, C.M. Possible effects of qualitative changes in the insect diet of avian predators. Ibis 118: 580 (1976).

    Article  Google Scholar 

  39. Taper, M.L.; Zimmerman, E.M.; Case, T.J. Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymentoptera: Cynipidae)): The importance of the tannin/fungus interaction. Oecologia 68: 437 (1986).

    Article  Google Scholar 

  40. Luthy, P.; Hofmann, C.; Jaquet, F. Inactivation of delta-endotoxin of Bacillus thuringiensis by tannin. FEMS Microbiol. Letters 28: 31 (1985).

    Article  Google Scholar 

  41. Keating, S.T.; Yendol, W.G. Influence of selected host plants on gypsy moth (Ledidoptera: Lymantriidae) larval mortality caused by a baculovirus. Environ. Entomol. 16: 459 (1987).

    Google Scholar 

  42. Keating, S.T.; Yendol, W.G.; Schultz, J.C. Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to baculovirus and host plant foliage constituents. Environ. Entomol. (in press).

    Google Scholar 

  43. Felton, G.W.; Duffey, S.S.; Vail, P.V.; Kaya, H.K.; Manning, J. Interaction of nuclear polyhedrosis virus with catechols: potential incompatibility for host-plant resistance against noctuid larvae. J. Chem. Ecol. 13: 947 (1987).

    Article  CAS  Google Scholar 

  44. Bernays, E.A.; Woodhead, S. Plant phenols utilized as nutrients by a phytophagous insect. Science 216: 201 (1982).

    Article  PubMed  CAS  Google Scholar 

  45. Ehrlich, P.R.; Raven, P.H. Butterflies and plants: a study in coevolution. Evolution 18: 586 (1964).

    Article  Google Scholar 

  46. Schultz, J.C.; Lechowicz. Host plant, larval age and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar L.), Oecologia 71: 133 (1986).

    Article  Google Scholar 

  47. Dow, J.A.T. Insect midgut function. Adv. Insect Physiol. 19: 187 (1986).

    Article  CAS  Google Scholar 

  48. Schultz, J.C.; Baldwin, I.T.; Nothnagle, P.J. Hemoglobin as a binding substrate in quantitative analysis of plant tannins. J. Agric. Food Chem. 29: 823 (1981).

    Article  CAS  Google Scholar 

  49. Lawson, D.L.; Merritt, R.W.; Martin, M.M.; Martin, J.S.; and Kukor, J.J. The nutritional ecology of larvae of Alsophila pometaria and Anisota senatoria feeding on early-and late-season oak foliage. Ent. Exp. and Appl. 35: 105 (1984).

    CAS  Google Scholar 

  50. Berenbaum, M. Adaptive significance of midgut pH in larval Lepidoptera. Amer. Nat. 115: 138 (1980).

    Article  Google Scholar 

  51. Martin, M.M.; Rockholm, D.C.; Martin, J.S. Effects of surfactants, pH, and certain cations on preciptation of proteins by tannins. J. Chem. Ecol. 11: 485 (1985).

    Article  CAS  Google Scholar 

  52. Gould, S.J.; Lewontin, R.C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205: 581 (1979).

    Article  PubMed  CAS  Google Scholar 

  53. Martin, M.M.; Martin, J.S. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61: 342 (1984).

    Article  Google Scholar 

  54. Martin, J.S.; Martin, M.M.; Bernays, E.A. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J. Chem. Ecol. 13: 605 (1987).

    Article  CAS  Google Scholar 

  55. Turunen, S. Digestion and absorption of lipids in insects. Comp. Biochem. Physiol. 63A: 455 (1979).

    Article  Google Scholar 

  56. Asquith, T.; Mehansho, H.; Rogler, J.; Butler, L.G.; Carlson, D.M. Induction of proline-ridi protein biosynthesis in salivary glands by tannins. Fed. Proc. 44: 1097 (1985).

    Google Scholar 

  57. Schultz, J.C.; Keating, S.T. (unpublished results).

    Google Scholar 

  58. Swain, T.; Goldstein, J.L. The quantitative analysis of phenolic compounds. In: Pridham, J.B. (ed.) Methods in Polyphenol Chemistry, Pergamon Press, New York (1964).

    Google Scholar 

  59. Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. (in press).

    Google Scholar 

  60. Martin, J.S.; Martin, M.M. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54: 205 (1982).

    Article  Google Scholar 

  61. Hagerman, A.E. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14: 453 (1988).

    Article  CAS  Google Scholar 

  62. Schultz, J.C. (unpublished results).

    Google Scholar 

  63. Baldwin, I.T.; Schultz, J.C. Rapid damage-induced changes in tree leaf chemistry and evidence of communication between plants. Science 221: 277 (1984).

    Article  Google Scholar 

  64. Wint, G.R.W. The effect of foliar nutrient upon the growth and feeding of lepidopteran larva. In: Lee, J.A.; McNeill, S.; Rorison, I.H. (eds.) Nitrogen as an Ecological Factor, Blackwell, London (1983).

    Google Scholar 

  65. Zummo, G.R.; Benedict, J.H.; Segers, J.C. No-choice study of plant-insect interactions for Heliothis zea (Boddie) (Lepidoptera: Noctuidae) on selected cottons. Environ. Entomol. 12: 1833 (1983).

    Google Scholar 

  66. Elliger, C.A.; Chan, B.G.; Waiss, Jr., A.C. Relative toxicity of minor cotton terpenoids compared to gossypol. J. Econ. Entomol. 71: 161 (1978).

    CAS  Google Scholar 

  67. Boughdad, A.; Gillon, Y.; Gagnepain, C. Influence des tanins condenses du tegument de feves (Vicia faba) sur le developpement larvaire de Callosobruchus maculates. Ent. Exp. and Appl. 42: 125 (1986).

    Article  CAS  Google Scholar 

  68. Bryant, J.P.; Clausen, T.B.; Reichardt, P.B.; McCarthy, M.C.; Werner, R.A. Effect of nitogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Popalus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana (Walker)), Oecologia 73: 513 (1987).

    Article  Google Scholar 

  69. Cooper-Driver, G.; Finch, S.; Swain, T.; Bernays, E.A. Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinum. Biochem. Syst. Ecol. 5: 177 (1977).

    Article  CAS  Google Scholar 

  70. Klocke, J.A.; Van Wagenen, B.; Balandrin, M.F. The ellagitannin geraniin and its hydrolysis products isolated as insect growth inhibitors from semi-arid land plants. Phytochemistry 25: 85 (1986).

    Article  CAS  Google Scholar 

  71. Bergelson, J.; Fowler, S.; Hartley, S. The effects of foliage damage on casebearing moth larvae. Coleophora serratella, feeding on birch. Ecol. Entomol. 11: 241 (1986).

    Article  Google Scholar 

  72. Haukioja, E.; Niemela, P.; Siren, S. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation in the mountain birch Betula pubescens ssp. tortuosa, Oecologia 65: 214 (1985).

    Article  Google Scholar 

  73. Kawanishi, K.; Raffauf, R.F. Caryocar microcarpum: an ant repellent and fish poison of the Northwest Amazon. J. Nat. Prod. 49: 1167 (1986).

    Article  CAS  Google Scholar 

  74. Nichols-Orians, C.; Schultz, J.C. (unpublished results).

    Google Scholar 

  75. Seaman, F.C. The effects of tannin acid and other phenolics on the growth of the fungus cultivated by the leafcutting ant. Myrmicocrypta buenzlii. Biochem. Syst. Ecol. 12: 155 (1984).

    Article  CAS  Google Scholar 

  76. Leszczynski, B.; Warchol, J.; Niraz, S. The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Insect Sci. Applic. 6: 157 (1985).

    CAS  Google Scholar 

  77. Jones, C.G.; Firn, R.D. Some allelochemicals of Pteridium aquilinum and their involvement in resistance to Pieris brassicae. Biochem. Syst. Ecol. 8: 187 (1979).

    Article  Google Scholar 

  78. Bennett, S.E. Tannic acid as a repellent and toxicant to alfalfa weevil larvzae. J. Econ. Entomol. 58: 372 (1965).

    Google Scholar 

  79. Schoonhoven, L.M.; Dersken-Koppers, I. Effects of secondary plant substances on drinking behaviour in some Heteroptera. Ent. Exp. and Appl. 16: 141 (1973).

    Article  CAS  Google Scholar 

  80. Todd, G.W.; Getdium, A.; Cress, D.C. Resistance in barley to greenbug. Schizaphis graminum L. Toxicity of the phenolic and flavonoid compounds and related substances. Ann. Entomol. Soc. Am. 64: 718 (1971).

    CAS  Google Scholar 

  81. Puttick, G.M. Utilization of evergreen and deciduous oaks by the California oak moth. Phryganidia californica, Oecologia 68: 589 (1986).

    Article  Google Scholar 

  82. Chan, B.G.; Waiss, A.C.; Lukefahr, M. Condensed tannin, an antibiotic chemical from Gossypium hirsutum. J. Insect Physiol. 24: 113 (1978).

    Article  CAS  Google Scholar 

  83. Smiley, J.T.; Wisdom, C.S. Determinants of growth rate on chemically heterogeneous host plants by specialist insects. Biochem. Syst. Ecol. 13: 305 (1985).

    Article  CAS  Google Scholar 

  84. Ottosson, J.H.; Anderson, J.M. Seasonal and interspecific variation in the biochemical composition of some British fern species and their effects on Spodoptera littoralis larvae. Biol. J. Linn. Soc. 19: 305 (1983).

    Article  Google Scholar 

  85. Fox, L.R.; Macauley, B.J. Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia 29: 145 (1977).

    Google Scholar 

  86. Yokoyama, V.Y.; Mackey, B.E. Protein and tannin in upper, middle, and lower cotton plant strata and cigarette beetle (Coleoptera:Anobüdae) growth on the foliage. J. Econ. Entomol. 80: 843 (1987).

    CAS  Google Scholar 

  87. Leather, S.R.; Watt, A.D.; Forrest, G.I. Insect-induced chemical changes in young lodgepole pine (Pinus contorts): the effect of previous defoliation on oviposition, growth and survival of the pine beauty moth. Panolis ftammea. Ecol. Entomol. 12: 275 (1987).

    Article  Google Scholar 

  88. Mattson, W.J.; Slocum, S.S.; Koller, C.N. Spruce budworm (Choristoneura fumiferana) performance in relation to foliar chemistry of its host plants. U.S. For. Serv. Tech. Rpt. 85: 55 (1983).

    Google Scholar 

  89. Wagner, M.R.; Blake, E.A. Western spruce budworm consumption - effects of host species and foliage chemistry. U.S. For. Serv. Tech. Rpt. 85: 49 (1983).

    Google Scholar 

  90. Cates, R.G.; Redak, R.A.; Henderson, C.B. Patterns in defensive natural product chemistry: interactions. A CS Symp. 208: 3 (1983).

    CAS  Google Scholar 

  91. Coley, P.D. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr. 53: 209 (1983).

    Article  Google Scholar 

  92. Schmitt, M.D.C.; Czapowskyj, M.M.; Allen, D.C.; White, E.H.; Montgomery, M.E. Spruce budworm fecundity and foliar chemistry: influence of site. U.S. For. Serv. Tech. Rpt. 85: 97 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Schultz, J.C. (1989). Tannin-Insect Interactions. In: Hemingway, R.W., Karchesy, J.J., Branham, S.J. (eds) Chemistry and Significance of Condensed Tannins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7511-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7511-1_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7513-5

  • Online ISBN: 978-1-4684-7511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics