Skip to main content

New NMR Experiments Applicable to Structure and Conformation Analysis

  • Chapter
Chemistry and Significance of Condensed Tannins

Abstract

Recent advances in the field of NMR spectroscopy have been primarily responsible for the rapid progress achieved in the study of proanthocyanidins over the past decade. This chapter summarizes these advances by describing how techniques including n.O.e. difference spectroscopy, homonuclear J-resolved and chemical shift correlation methods, and 13C- and heteronuclear experiments have been applied to analyses of some example proanthocyanidins. These NMR experiments have provided information regarding molecular structure, configuration, and conformation that was previously inaccessible or extremely difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Noggle, J.H.; Schirmer, R.E. The Nuclear Overhauser Effect. Academic Press, New York (1971).

    Google Scholar 

  2. Hall, L.D.; Saunders, J.M.K. Complete analysis of 1H-rim’. spectra of complex natural products using a combination of one-and two-dimensional techniques. 1. Dehydrotestosterone. J. Amer. Chem. Soc. 102: 5704 (1980).

    Google Scholar 

  3. Hull, W.E. Aspect 2000 Applications Note No. 1. Bruker Report 1: 4 (1978).

    Google Scholar 

  4. Chapman, E.G.; Abercrombie, D.B.; Carey, P.D.; Bradbury, E.M. The measurement of small nuclear Overhauser effects in the proton spectra of proteins and their application of lysozyme. J. Magn. Reson. 31: 459 (1978).

    CAS  Google Scholar 

  5. Jeener, J.; Meier, B.H.; Bachman, P.; Ernst, R.R. Investigation of exchange processes by two-dimensional nnir spectroscopy. J. Chem. Phys. 71: 4546 (1979).

    Article  CAS  Google Scholar 

  6. Young, E.; Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 17. Oligomeric (2R,3S)-3,3’,4’,7,8-pentahydroxyflavans: Atropisomerism and conformation of biphenyl and m-terphenyl analogues from Prosopis glandulosa (’Mesquite’). J. Chem. Soc., Perkin Trans. 1: 1737 (1986).

    Google Scholar 

  7. Pelter, A.; Amenechi, P.I. Isoflavonoid and pterocarpinoid extractives of Lanchocarpus laxifiorus J. Chem. Soc. (C):887 (1969).

    Google Scholar 

  8. Pelter, A.; Amenechi, P.I.; Warren, R.; Harper, S.H. The structures of two proanthocyanidins from Julbernadia globifiora. J. Chem. Soc. (C): 2572 (1969).

    Google Scholar 

  9. Hundt, H.K.L.; Roux, D.G. Condensed tannins: Determination of the point of linkage in ‘terminal’ (+)-catechin units and degradative bromination of 4-flavanylflavan-3,4-diols. J. Chem. Soc., Chem. Commun.: 696 (1978).

    Google Scholar 

  10. Hundt H.K.L.; Roux, D.G. Synthesis of condensed tannins. Part 3. Chemical shifts for determining the 6- and 8- bonding positions of ‘terminal’ (+)-catechin units. J. Chem. Soc., Perkin Trans. 1: 1227 (1981).

    Google Scholar 

  11. Young, D.A.; Young, E.; Roux, D.G.; Brandt, E.V.; Ferreira, D. Synthesis of condensed tannins. Part 19. Phenol oxidative coupling of (+)-catechin and (+)-mesquitol. Conformation of bis-(+)-catechins. J. Chem. Soc., Perkin Trans. 1: 2345 (1987).

    Google Scholar 

  12. Brandt, E.V.; Young, D.A.; Young, E.; Ferreira, D. Absolute configuration of atropisomeric m-terphenyl-type flavan-3-ols. J. Chem. Soc., Perkin Trans. 1: 1365 (1987).

    Article  Google Scholar 

  13. Young, D.A.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 15. Structure of natural ‘angular’ profisetinidin tetraflavanoids: Asymmetric induction during oligomeric synthesis. J. Chem. Soc., Perkin Trans. 1: 2529 (1985).

    Google Scholar 

  14. Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 16. Stereochemical differentiation of the first ‘angular’ (2S,3R)-profisetinidin tetraffavanoids from Rhus lancea (Karree) and the varying dynamic behaviors of their derivatives. J. Chem. Soc., Perkin Trans. 1: 2537 (1985).

    Google Scholar 

  15. Brandt, E.V.; Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Cycloconformations of two tetraflavanoid profisetinidin condensed tannins. J. Chem. Soc., Chem. Commun.: 913 (1986).

    Google Scholar 

  16. Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 20. Cycloconformations and conformational stability among derivatives of ‘angular’ tetraflavanoid profisetinidins. J. Chem. Soc., Perkin Trans. 1: 2353 (1987).

    Google Scholar 

  17. Young, D.A.; Ferreira, D.; Roux, D.G. Stereochemistry and dynamic behavior of some synthetic ‘angular’ profisetinidin tetraflavanoid derivatives. J. Polym. Sci., Polym. Chem. Ed. 24: 835 (1986).

    Article  CAS  Google Scholar 

  18. Steenkamp, J.A.; Steynberg, J.P.; Brandt, E.V.; Ferreira, D.; Roux, D.G. Phlobatannins, a novel class of ring-isomerized condensed tannins. J. Chem. Soc., Chem. Commun.: 1678 (1985).

    Google Scholar 

  19. Steynberg, J.P.; Young, D.A.; Burger, J.F.W.; Ferreira, D.; Roux, D.G. Phlobatannins via facile ring isomerizations of profisetinidin and prorobinetinidin condensed tannin units. J. Chem. Soc., Chem. Commun.: 1013 (1986).

    Google Scholar 

  20. Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V. Steenkamp, J.A.; Ferreira, D. Oligomeric flavanoids. Part, 3. Structure and synthesis of phlobatannins related to (-)fisetinidol-(4ce,6) and (4a,8)-(+)-catediin profisetinidins. J. Chem. Soc., Perkin Trans. 1: 3323 (1988).

    Google Scholar 

  21. Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V.; Steenkamp, J.A.; Ferreira, D. Novel base-catalysed rearrangements of (-)-fisetinidol-(+)-catechin profisetinidins with 2,3-trans-3,4-cis flavan-3-ol constituent units. J. Chem. Soc., Chem. Commun.: 1055 (1988).

    Google Scholar 

  22. Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V.; Steenkamp, J.A.; Ferreira, D. Oligomeric flavanoids. Part 4. Base-catalysed conversions of (-)-fisetinidol-(+)-catechin profisetinidins with 2,3-trans-3,4-trans-flavan-3-ol constituent units. J. Chem. Soc., Perkin Trans. 1: 3331 (1988).

    Google Scholar 

  23. Burger, J.F.W.; Steynberg, J.P.; Young, D.A.; Brandt, E.V.; Ferreira, D. Oligomeric flavanoids. Part 5. Base-catalysed C-ring isomerization of (+)-fisetinidol-(+)-catechin profisetinidins. J. Chem. Soc., Perkin Trans. 1 8/02280A/P1P (1988).

    Google Scholar 

  24. Kessler, H.; Bermel, W.; Griesinger, C.; Kolar, C. The elucidation of the constitution of glycopeptides by the nmr spectroscopic COLOC technique. Angew. Chem. Int. Ed. Engl. 25: 342 (1986).

    Article  Google Scholar 

  25. Steynberg J.P.; Brandt E.V.; Burger J.F.W.; Bezuidenhoudt, B.C.B.; Ferreira, D. Stil-bene glycosides from Guibourtia coleosperma: determination of glycosidic connectivities by homonuclear nuclear Overhauser effect difference spectroscopy. J. Chem. Soc., Perkin Trans. 1: 37 (1988).

    Google Scholar 

  26. Bombardelli, E.; Martinelli, E.M.; Mustich, G. Plants of Mozambique IX. New hydroxystilbene glycoside form Terminalia sencea. Fitoterapia 46: 199 (1975).

    CAS  Google Scholar 

  27. Aue, W.P.; Karhan, J.; Ernst, R.R. Homonuclear broad band decoupling and two-dimensional J-resolved nmr spectroscopy. J. Chem. Phys. 64: 4226 (1976).

    Article  CAS  Google Scholar 

  28. Bax, A.D.; Two-dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, Holland p. 99 (1982).

    Google Scholar 

  29. Jencer, J. Ampere International Summer School, Basko Polje, Yugoslavia, (1981).

    Google Scholar 

  30. Aue, W.P.; Bartholdi, E.; Ernst, R.R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64: 2229 (1976).

    Article  CAS  Google Scholar 

  31. Anderson, W.A.; Freeman, R. Influence of second radio-frequency field on high resolution nuclear magnetic resonance spectra. J. Chem. Phys. 37: 85 (1962).

    Article  CAS  Google Scholar 

  32. Bezuidenhoudt, B.C.B.; Brandt, E.V.; Roux, D.G. Synthesis of isoflavanoid oligomers using a pterocarpan as inceptive electrophile. J. Chem. Soc., Perkin Trans. 1: 2767 (1984).

    Google Scholar 

  33. Bezuidenhout, S.C.; Bezuidenhoudt, B.C.B.; Brandt, E.V.; Ferreira, D. Oligomeric isoflavonoids. Part 2. Structure and synthesis of xanthocercin A and B, the first isoflavono-lignoids. J. Chem. Soc., Perkin Trans. 1:1237 (1988).

    Google Scholar 

  34. Ternai, B.; Markham, K.R. Carbon-13 nmr studies of flavonoids. I. Flavones and flavonols. Tetrahedron 32: 565 (1976).

    Article  CAS  Google Scholar 

  35. Markham, K.R.; Ternai, B. 13C nmr of flavonoids. II. Flavonoids other than flavone and flavonol aglycones. Tetrahedron 32: 2607 (1976).

    Article  CAS  Google Scholar 

  36. Wagner, H.; Chari, V.M.; Sonnenbichler, J. 13C-nmr Spectren naturlich verkommender Flavonoide. Tetrahedron Letters 21: 1799 (1976).

    Article  Google Scholar 

  37. Kingsburg, C.A.; Looker, J.H. Carbon-13 spectra of methoxyflavones. J. Org . Chem. 40: 1120 (1975).

    Google Scholar 

  38. Joseph-Nathan, P.; Mares, J. Hernandez, Ma.C.; Schoolery, J.N. Proton and carbon-13 nuclear magnetic resonance studies of flavone and deuterated analogues. J. Magn. Reson. 16: 447 (1974).

    CAS  Google Scholar 

  39. Pelter, A.; Ward, R.S.; Gray, T.I. The carbon-13 nuclear magnetic resonance spectra of flavonoids and related compounds. J. Chem. Soc., Perkin Trans. 1: 2475 (1976).

    Google Scholar 

  40. Wherli, F.W. Proton coupled 13C nuclear magnetic resonate spectra involving 13C–1H spin-spin coupling to hydroxyl-protons, a complementary assignment aid. J. Chem. Soc., Chem. Commun.: 663 (1975).

    Google Scholar 

  41. Solaniova, E.; Toma, S.; Gronowitz, S. Investigation of substituent effects of chalcones by carbon-13 nmr spectroscopy. Org . Magn. Reson. 8: 439 (1976).

    Google Scholar 

  42. Chang, C. Carbon-13 proton long range couplings of phenols. Hydrogen bonding and stereospecificity. J. Org . Chem. 41: 1881 (1976).

    Google Scholar 

  43. Chari, V.M.; Ilyas, M.; Wagner, H.; Neszmelyi, A.; Chen, L.-K.; Lin, Y.-C.; Lin, Y.-M. 13C runr spectroscopy of biflavonoids. Phytochemistry 18: 1273 (1977).

    Article  Google Scholar 

  44. Chari, V.M.; Jordan, M.; Wagner, H.; Theis, P.W. A 13C-nmr study of the structure of an acyl-linarin from Valeriana wallichii. Phytochemistry 16: 1110 (1977).

    Article  CAS  Google Scholar 

  45. Karchesy, J.J.; Hemingway, R.W. Loblolly pine bark polyflavanoids. J. Agric. Food Chem. 28: 222 (1980).

    Article  CAS  Google Scholar 

  46. Czochawska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc., Perkin Trans. 1: 2278 (1980).

    Google Scholar 

  47. Porter, L.J.; Newman, R.H.; Foo, L.Y.; Wong, H.; Hemingway, R.W. Polymeric proanthocyanidins. 13C nmr studies of procyanidins. J. Chem. Soc., Perkin Trans. 1: 1217 (1982).

    Google Scholar 

  48. Wenkert, E.; Buckwalter, B.L.; Burfitt, I.R.; Gasic, M.J.; Gottlieb, H.E.; Hagaman, E.W.; Schell, F.M.; Wovkulich, P.M.; Heleva, A.Z. In: Levy, G.C. (ed.) Topics in Carbon-13 NMR Spectroscopy. Wiley-Interscience, New York, II:2 (1976).

    Google Scholar 

  49. Philipsborn, W. von. Applications of double resonance and Fourier transform nmr spectroscopy in organic chemistry. Pure Appl. Chem. 40: 159 (1974).

    Article  Google Scholar 

  50. Chalmers, A.A.; Pachler, K.G.R.; Wessels, P.L. Difference selective population inversion spectra and their application to the study of carbon-13 - hydrogen coupling constants in 2,3-dibromothiophene. Org . Magn. Reson. 6: 445 (1974).

    Google Scholar 

  51. Morris, G.A.; Freeman, R. Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Amer. Chem. Soc. 101: 760 (1979).

    Article  CAS  Google Scholar 

  52. Doddrell, D.M.; Pegg, D.T.; Bendall, M.R. Distortionless enhancement of nmr signals by polarization transfer. J. Magn. Reson. 48: 323 (1982).

    CAS  Google Scholar 

  53. Maudsley, A.A.; Ernst, R.R. Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy. Chem. Phys. Lett. 50: 368 (1977).

    Article  CAS  Google Scholar 

  54. Bodenhausen, G.; Freeman, R. Correlation of proton and carbon-13 nmr spectra by heteronuclear two-dimensional spectroscopy. J. Magn. Reson. 28: 471 (1977).

    CAS  Google Scholar 

  55. Maudsley, A.A.; Mueller L.; Ernst, R.R. Cross-correlation of spin-decoupled nmr spectra by heteronuclear two-dimensional spectroscopy. J. Magn. Reson. 28: 463 (1977).

    CAS  Google Scholar 

  56. Bax, A.; Morris, G. An improved method for heteronuclear chemical shift correlation by two-dimensional nmr. J. Magn. Reson. 42: 501 (1981).

    CAS  Google Scholar 

  57. Laks, P.E.; Hemingway, R.W.; Conner, A.H. Condensed tannins. Base-catalyzed reactions of polymeric procyanidins with phloroglucinol. Intramolecular rearrangements. J. Chem. Soc., Perkin Trans. 1: 1975 (1987).

    Google Scholar 

  58. Kalyanasundaram, K. Use of long range 1H–13C couplings in structure determination: shellatin, a novel dihydroisocoumarin from Aspergillus varicolor. J. Chem. Soc., Chem. Commun.: 628 (1978).

    Google Scholar 

  59. Arisawa, M.; Handa, S.S.; McPherson, D.D.; Laukin, D.C.; Cordell, G.A.; Wong, H.H.S.; Farnsworth, N.R. Plant anticancer agents. XXIX. Cleomiscosin A from Simaba multiflora, Soulanea soulameopides and Matayba arborescens. J. Nat. Prod. 47: 300 (1984).

    Article  CAS  Google Scholar 

  60. Ray, A.B. Chasttopadhyay, S.K.; Kumar, S.; Konno, C.; Kiso, Y.; Hinkino, H. Structures of cleomisconsias, coumarino-lignoids of Cleome miscosa seeds. Tetrahedron 41: 209 (1985).

    Article  CAS  Google Scholar 

  61. Kessler, H.; Griesinger, C.; Zarbock, J.; Loosli, H.R. Assignment of carbonyl carbons and sequence analysis in peptides by heteronudear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC). J. Magn. Reson. 57: 331 (1984).

    CAS  Google Scholar 

  62. Bax, A. Structure determination and spectral assignment by pulsed polarization transfer via long-range proton-carbon-13 couplings. J. Magn. Reson. 57: 314 (1984).

    CAS  Google Scholar 

  63. Lin, L.-J.; Cordell, A. Applications of the SINEPT pulse progamme in the structure elucidation of coumarinolignans. J. Chem. Soc., Chem. Commun.: 377 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Ferreira, D., Brandt, E.V. (1989). New NMR Experiments Applicable to Structure and Conformation Analysis. In: Hemingway, R.W., Karchesy, J.J., Branham, S.J. (eds) Chemistry and Significance of Condensed Tannins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7511-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7511-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7513-5

  • Online ISBN: 978-1-4684-7511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics