Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 246))

  • 144 Accesses

Abstract

When the onsite correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and we are free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties.

In its present stage the theory predicts orbital currents which result in a distribution of magnetic fields at crystallographically equivalent sites. Such fields are not observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Hasegawa, P. Lederer, T. M. Rice and P. B. Wiegmann, Phys. Rev. Lett., 63, 907, (1989)

    Article  ADS  Google Scholar 

  2. P. Lederer, D. Poilblanc and T. M. Rice, Phys. Rev. Lett., 63, 1519, (1989)

    Article  ADS  Google Scholar 

  3. I. Affleck and B. J. Marston, Phys. Rev. B 37, 3774, (1988)

    Article  ADS  Google Scholar 

  4. I. Affleck, Z. Zou, T. Hsu and P. W. Anderson, Phys. Rev. B 38, 745, (1988)

    Google Scholar 

  5. V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2995, (1987)

    Article  ADS  Google Scholar 

  6. R. B. Laughlin, Phys. Rev. Lett. 60, 2677, (1988)

    Google Scholar 

  7. P. B. Wiegmann, Phys. Rev. Lett. 60, 821, (1988);

    Article  ADS  Google Scholar 

  8. P. B. Wiegmann, Physica Scripta T 27, 160 C (1988)

    Google Scholar 

  9. X. G. Wen and A. Zee, ITP preprint (1989)

    Google Scholar 

  10. N. Read, Phys. Rev. Lett. 62, 86, (1989);

    Google Scholar 

  11. see also S. M. Girvin and A. H. Mac Donald, Phys. Rev. Lett. 58, 1252, (1987)

    Google Scholar 

  12. Dung-Hai Lee and Matthew P. A. Fisher, Phys. Rev. Lett. 63, 903, (1989)

    Google Scholar 

  13. F. C. Zhang, C. Gros, T. M. Rice and H. Shiba, Supercond. Sei. Technol. 1, 36, (1988)

    Article  ADS  Google Scholar 

  14. G. Montambaux, Phys. Rev. Lett. (C), 63, 1657, (1989)

    Google Scholar 

  15. P. W. Anderson, Science 235, H96, (1987)

    Article  Google Scholar 

  16. F. C. Zhang and T. M. Rice, Phys. Rev. B 37. 3759, (1988)

    Google Scholar 

  17. Various authors in those Proceedings discuss the phase separation which occurs in the t—J model. This phenomenon was discussed some time ago in connection with the physics of bcc 3He in the mK range. The point of view in this paper is that phase separation, which is possible for uncharged fermion crystals is inhibited by Coulomb forces in doped Mott insulators. See G. Montambaux, M. Héritier and P. Lederer, J. Low Temp. Phys., 47, 39, (1982)

    Google Scholar 

  18. P. W. Anderson, B. S. Shastry and D. Hristopoulos, Princeton preprint (1989)

    Google Scholar 

  19. D. Poilblanc, ETH, preprint (1989)

    Google Scholar 

  20. S. Teitel and C. Jayaprakash, Phys. Rev. Lett. 51, 1999, (1983)

    Google Scholar 

  21. S. Teitel and C. Jayaprakash, Phys. Rev. B 27. 598, (1983)

    ADS  Google Scholar 

  22. T. C. Halsey, Phys. Rev. B 31. 5728, (1985)

    Google Scholar 

  23. J. Villain, J. Phys. C: Solid State Phys. 10, 1717, (1977)

    Article  ADS  Google Scholar 

  24. I am indebted to N. Papanicolaou for a helpful remark on that point

    Google Scholar 

  25. X. G. Wen, F. Wylczek, A. Zee, Phys. Rev. B 39. 11413, (1989)

    Google Scholar 

  26. T. M. Rice, P. Lederer, D. Poilblanc, ETH Preprint, (1989)

    Google Scholar 

  27. Y. H. Chen, F. Wilczek, E. Witten, B. I. Halperin, IAZSSNS-HEP-89/27, preprint

    Google Scholar 

  28. B. I. Halperin, J. March-Russel and F. Wilczek, HUTP-89/A010, preprint

    Google Scholar 

  29. R. F. Kiefl et al., Phys. Rev. Lett. 63, 2136, (1989)

    Article  ADS  Google Scholar 

  30. See also the variational Monte-Carlo results by Shoudan Liang and Nandini Trivedi, preprint

    Google Scholar 

  31. Y. Hasegawa and D. Poilblanc, preprint

    Google Scholar 

  32. F. C. Zhang, preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Lederer, P. (1991). Correlated Electron Motion, Flux States and Superconductivity. In: Reiter, G., Horsch, P., Psaltakis, G.C. (eds) Dynamics of Magnetic Fluctuations in High-Temperature Superconductors. NATO ASI Series, vol 246. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7490-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7490-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7492-3

  • Online ISBN: 978-1-4684-7490-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics