Skip to main content

Response of Porous Beryllium to Static and Dynamic Loading

  • Chapter
High-Pressure Science and Technology

Abstract

The effectiveness of porous materials in attenuating stress pulses and in reducing the thermomechanical stresses arising from rapid energy deposition has been the subject of numerous studies during the past decade. Because of the large number of manufacturing parameters (composition, porosity, pore size, heat treatment, etc.) available to the developers of porous materials, extensive tailoring of properties to meet widely varying requirements is practical, and the materials manufactured and the studies to date now number in the dozens.

Work supported by the Energy Research and Development Agency under contract W-7405-Eng-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. M. Isbell, 0. R. Walton, and F. H. Ree, Lawrence Livermore Laboratory Rept. UCRL-51682, Part 1 (1977).

    Google Scholar 

  2. R. N. Shock, A. E. Abey, and A. G. Duba, Lawrence Livermore Laboratory Rept. UCRL-51682, Part 2 (1974).

    Google Scholar 

  3. F. H. Ree, W. M. Isbell, and R. R. Horning, Lawrence Livermore Laboratory Rept. UCRL-51682, Part 4 (1974).

    Google Scholar 

  4. J. E. Hanafee and E. 0. Snell, Lawrence Livermore Laboratory Rept. UCRL-51682, Part 6 (1974).

    Google Scholar 

  5. R. R. Horning and W. M. Isbell, Rev. Sei. Instr. 46 (10), 1374 (1975).

    Google Scholar 

  6. W. Herrmann, J. Appl. Physics 40, 2490 (1969).

    Article  Google Scholar 

  7. A. C. Holt, A. S. Kusubov, D. A. Young, and W. H. Gust, “Thermo-mechanical Response of Porous Carbon,” Lawrence Livermore Laboratory, Rept. UCRL 51330 (1973).

    Google Scholar 

  8. M. M. Carroll and A. C. Holt, J. Appl. Phys. 43, 1626 (1972).

    Article  Google Scholar 

  9. B. M. Butcher, “Numerical Techniques for One Dimensional Rate Dependent Porous Material Compaction Calculations, SC-RR-710112, Sandia Laboratories Report (April 1971).

    Google Scholar 

  10. L. Seaman, R. E. Tokheim, and D. R. Curran, “Computational Representation of Constitutive Relations for Porous Material,” Stanford Research Institute, prepared for Defense Nuclear Agency, DNA 3412F (May 1974).

    Google Scholar 

  11. W. H. Gust, private communication.

    Google Scholar 

  12. J. K. Mackenzie, Proc. Phys. Soc. B63, 2 (1950).

    MATH  Google Scholar 

  13. R. N. Schock, A. E. Abey, and A. G. Duba, J. Appl. Phys. 47, 53 (19 6).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Isbell, W.M., Walton, O.R., Ree, F.H. (1979). Response of Porous Beryllium to Static and Dynamic Loading. In: Timmerhaus, K.D., Barber, M.S. (eds) High-Pressure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7470-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7470-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7472-5

  • Online ISBN: 978-1-4684-7470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics