Skip to main content

Isothermal Compression of V, Nb, and Ta to 100 Kbar: Correlation with Ultrasonic, Shock Wave, and other Static Data

  • Chapter
High-Pressure Science and Technology

Abstract

The transition metals in group VB (V, Nb, and Ta) have bcc structure and easily form bcc alloys with hcp metals in group IVB, and with bcc metals in group VIB. The bcc structure of the VB metals is stable to melting temperatures and is considered to be stable under pressures of the order of several megabars, as no phase transformation has yet been found at these pressures. Their pressurevolume (P-V) relationships have been investigated by three different means: (1) by direct static, isothermal compression measurements up to 30 kbar [1–3] and up to 45 kbar [4,5]; (2) by use of an equation of State utilizing the ultrasonically measured values of bulk modulus (Ko) and its pressure derivative (Ko′) [6–9]; and (3) by reduction of the shock wave Hugoniot data to isothermal P-V relationships based on certain thermodynamic considerations [10,11].

Hawaii Institute of Geophysics Contribution No. 905.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Bridgman, Proc. Am. Acad. Arts Sei. 77, 189 (1949).

    Article  Google Scholar 

  2. P.W. Bridgman, Proc. Am. Acad, Arts Sei. 62, 207 (1927).

    Article  Google Scholar 

  3. P.W. Bridgman, Proc. Am. Acad. Arts Sei. 70, 285 (1935).

    Article  Google Scholar 

  4. S.N. Vaidya and G.C. Kennedy, J. Phys. Chem. Solids 31, 2329 (1970).

    Article  Google Scholar 

  5. S. N. Vaidya and G. C. Kennedy, J. Phys. Chem. Solids 33., 1377 (1972).

    Google Scholar 

  6. L. J. Graham, H. Nadler, and R. Chang, J. Appl. Phys. 39, 3025 (1968).

    Article  Google Scholar 

  7. R. A. Chechille, Office of Naval Research Technical Report No. 10, Contract Nonr-1141 (05), Project NR 017–309, Case Institute of Technology (unpublished) (1967).

    Google Scholar 

  8. K. W. Katahara, M. H. Manghnani, and E. S. Fisher, J. Appl. Phys. 47, 434 (1976).

    Article  Google Scholar 

  9. K. W. Katahara, Ph.D. Dissertation, University of Hawaii, Honolulu, Hawaii (1977).

    Google Scholar 

  10. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter in High-Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York (1970).

    Google Scholar 

  11. L. Altshuler, A. Bakanova, and L. Dudoladov, Sov. Phys.-JET 26 (6), 1115 (1968).

    Google Scholar 

  12. H. K. Mao, T. Takahashi, and W. A. Bassett, Phys. Earth Planet. Interiors 3, 51 (1970).

    Google Scholar 

  13. L. G. Liu, T. Takahashi, and W. A. Bassett, J. Phys. Chem. Solids 31, 1345 (1970).

    Article  Google Scholar 

  14. L. G. Liu and W. A. Bassett, J. Appl. Phys. 44, 1475 (1973).

    Article  Google Scholar 

  15. D. R. Wilburn, M.S. Thesis, University of Rochester, Rochester, New York (1976).

    Google Scholar 

  16. D. R. Wilburn and W. A. Bassett, E.O.S. Trans. Am. Geophys. Union 58, 518 (1977).

    Google Scholar 

  17. G. J. Piermarini, S. Block, and J. D. Barnett, J. Appl. Phys. 44, 5377 (1973).

    Article  Google Scholar 

  18. G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).

    Article  Google Scholar 

  19. L. C. Ming and M. H. Manghnani, J. Appl. Phys. 49 (1), 208, 1978.

    Article  Google Scholar 

  20. W. A. Bassett, T. Takahashi, and P. W. Stock, Rev. Sei. Instrum. 38, 37 (1967).

    Article  Google Scholar 

  21. J. S. Weaver, T. Takahashi, and W. A. Bassett, in Accurate Characterization of the High Pressure Environment, Spec. Publ. 326, E. C. Lloyd, ed., National Bureau of Standards, Gaithersburg, Maryland (1971).

    Google Scholar 

  22. H. W. Mao, T. Takahashi, W. A. Bassett, and J. S. Weaver, J. Geophys. Res. 74, 1061 (1969).

    Article  Google Scholar 

  23. E. S. Fisher, M. H. Manghnani, and K. W. Katahara, Proceedings of 4th Intern. Conference on High Pressure, Kyoto, Japan (1974), p. 393.

    Google Scholar 

  24. L. Anderson, in The Nature of the Solid Earth, E. C. Robertson, ed., McGraw-Hill Book Company (1972), p. 575.

    Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics, 3rd edition, John Wiley and Sons, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ming, L.C., Manghnani, M.H. (1979). Isothermal Compression of V, Nb, and Ta to 100 Kbar: Correlation with Ultrasonic, Shock Wave, and other Static Data. In: Timmerhaus, K.D., Barber, M.S. (eds) High-Pressure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7470-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7470-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7472-5

  • Online ISBN: 978-1-4684-7470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics