Skip to main content

Light-Quark Spectroscopy from Charmonium Decay

  • Chapter
The Superworld II

Part of the book series: The Subnuclear Series ((SUS,volume 25))

  • 68 Accesses

Abstract

Hadron phenomenology inspired by quantum chromodynamics (QCD) has made great progress in explaining, in a semi-quantitative way, the spectroscopy and decay rates of mesons containing heavy (b, c) quarks. Light (u, d, s) quark spectroscopy was vital for the early successes of the SU6 quark model; these early successes were, however, never permitted to grow into a quantitatively descriptive, much less a predictive, theory of light quarks and antiquarks bound together by gluons, in a rigorous QCD framework. In the present lecture, we restrict ourselves to meson spectroscopy in the low-mass region ≲ 2.2 GeV/c2, and to the attempts to understand their mass and symmetry structure. We point up some particularly vexing open questions and problems. We then review the information that has recently become available from heavy quarkonium (mainly charmonium) decays into light-quark-based mesons. It turns out that these decays, observable largely in the center-of-mass frame, with large counting rates and low multiplicities, are able to permit valuable insights into the quark content and symmetry structure of this regime of u, d, s-based mesons. The lecture is organized as follows:

  1. 2.

    Open questions in the lowest-mass \( q\bar{q} \) nonets.

  2. 3.

    The use of charmonium decays to define projection operators of quark content and symmetry structure.

  3. 4.

    Information available from hadronic and radiative \( c\bar{c} \) decays: a case-by-case review.

  4. 5.

    Do gluonia show up in radiative decays?

  5. 6.

    Exotic candidates: do \( c\bar{c} \) decays have unique information to contribute?

  6. 7.

    A score sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a description of the basic non-relativistic quark model, see R.H. Dalitz, in High Energy Physics,Les Houches 1965 Lectures, C. de Witt and M. Jacob, eds., Gordon & Breach, New York (1966) pp. 251 ff. The QCD-inspired version was first worked out by A. de Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D12, 147 (1975).

    Google Scholar 

  2. See the excellent review article by N.A. Tórngvist, Acta Phys. Pol.,B16, 513 (1985);

    Google Scholar 

  3. N. Isgur, in The New Aspects of Subnuclear Physics,A Zichichi, ed., Plenum Press, New York, (1980).

    Google Scholar 

  4. Such calculations were explicitly done for low-mass pseudoscalar mesons: J.F. Donoghue, and H. Gomm, Phys. Lett. 121b, 49 (1983).

    Google Scholar 

  5. See also the summary talk of Hadron ‘87 by J.L. Rosner in the Proceedings volume, KEK 87–7(1987).

    Google Scholar 

  6. Ideal mixing corresponds in the standard mixing scheme (here illustrated for the case of the pseudoscalars), \( \eta =\cos \theta {{\eta }^{(8)}}+\sin \theta {{\eta }^{(1)}}, \) \(\eta ' = - \sin \theta {\eta ^{(8)}} + \cos \theta {\eta ^{(1)}},\) to an angle θ ≈ 35°. With the usual η (8), η (1) quark assignments, it would lead to \( \eta =\frac{1}{\sqrt{2}}(u\bar{u}+d\bar{d}), \) \(\eta ' = - s\bar s.\)

    Google Scholar 

  7. G. t’Hooft, Phys. Rev. Lett. 37, 8 (1976);

    Article  Google Scholar 

  8. G. t’Hooft, Phys. Rep. 142, 357 (1986);

    Article  Google Scholar 

  9. R. Crewther, Phys. Lett. 70B, 349 (1977);

    CAS  Google Scholar 

  10. R. Crewther, Riv. Nuovo Cim. 2, 63 (1979).

    Article  Google Scholar 

  11. S.J. Brodsky and G.P. LePage, Phys. Rev. D24, 2848 (1981).

    Google Scholar 

  12. N.N. Achasov et al., Soy. J. Nucl. Phys., 32, 566 (1980).

    Google Scholar 

  13. V. Novikov et al.,Nucl. Phys. B165, 67 (1980); for a lucid explanation of the instanton concept, read chapter 7 of S. Coleman, Aspects of Symmetry (Selected Erice Lectures), Cambridge Univ. Press (1985).

    Google Scholar 

  14. B. Barish and R. Stroynowski, Phys. Rep. 157, 1 (1988).

    Article  CAS  Google Scholar 

  15. The MARK III detector is described in D. Bernstein et al., Nucl. Instrum. & Methods 226, 301 (1984);

    Google Scholar 

  16. the DM2 detector in J.E. Augustin et al., Physica Scripta 23, 623 (1981).

    Article  CAS  Google Scholar 

  17. J.L. Rosner, Phys. Rev. D27, 1101 (1983)

    Google Scholar 

  18. H.E. Haber and J. Perrier, Phys. Rev. D32, 2961 (1985).

    Google Scholar 

  19. R. Baltrusaitis et al., (MARK III Collaboration), Phys. Rev. D32, 2883 (1985).

    Google Scholar 

  20. H. Aihara et al., Phys. Rev. Lett. 57, 51 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. J. Adler et al., (MARK III Collaboration), Contribution to the EPS Conference on High Energy Physics, Uppsala (1987), to be published; Z. Ajaltouni et al., (DM2 Collaboration), Contributions to the 1987 Lepton-Photon Symposium, Hamburg.

    Google Scholar 

  22. Numerous such schemes have been suggested; see, e.g., F. Caruso et al., Z. Phys. C30, 493 (1986).

    Google Scholar 

  23. S.C. Chao et al., Phys. Lett. B172, 253 (1986).

    Google Scholar 

  24. S.V. Chung et al.,Phys. Rev. Lett. 55, 779 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. A. Ando et al.,Phys. Rev. Lett. 57, 1296 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. H. Aihara et al., Phys. Rev. Lett. 57, 2500 (1982);

    Article  Google Scholar 

  27. G. Gidal et al.,(MARK II Collaboration) Phys. Rev. Lett. 59, 2016 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. This signal is observed in the charge modes K s K ± π , K+K π 0, K s K s π 0, by the MARK III Collaboration. (J. Richman, CalTech thesis (1983), unpublished), and by the DM2 Collaboration (J. Augustin, et al., LAL-85/27 1985)).

    Google Scholar 

  29. This state (see J. Richman, previous ref.) was originally identified with ι(1460); its important radiative width (Г(X) → γρ 0= 1.9 ± 0.7 MeV) was taken as an argument in opposition to the gluonium interpretation of ι(1460). See J. Donoghue in Particles and Fields 1981, C.A. Heusch and W.T. Kirk, eds. AIP, New York (1982).

    Google Scholar 

  30. F. Close, in Quarks and Hadronic Matter, Yukon Advanced Studies Institute (1984), originally proposed this test of the ι wavefunction, in the context of vector-dominance relations between photon and vector mesons.

    Google Scholar 

  31. N. Wermes, Proc. 5th Conference on Physics in Collision, Autun, France, World Scientific (1986).

    Google Scholar 

  32. Note that S-wave qq scattering lengths would lead naturally to an appearance of 0−+ characteristics. A quantitative evaluation is presently in progress.

    Google Scholar 

  33. The recent DM2 results (D. Bisello et al.,Contributions to the 1987 Lepton-Photon Symposium, Hamburg, and L. Stanco, Orsay preprint LAL-87–40) present the most consistent data sample. Note that the decay η c φφ permitted the MARK III Collaboration to confirm the identity of the state by way of a straightforward spin-parity analysis (R. Baltrusaitis et al., Phys. Rev. Lett. 52, 2126 (1984).

    Google Scholar 

  34. L. Köpke (MARK III Collaboration), Proceedings of the XXIIrd International Conference on High Energy Physics, S. Loken, ed., World Scientific, Singapore (1986).

    Google Scholar 

  35. J.E. Augustin et al., LAL 85/27 (1985).

    Google Scholar 

  36. D.M. Coffman et al., (MARK III Collaboration), SLAC-PUB-4460 (to be published).

    Google Scholar 

  37. W. Lockman (MARK III Collaboration), Proceedings, 1986 San Miniato Workshop (to be published).

    Google Scholar 

  38. W. Lockman (MARK III Collaboration), Proceedings, 1986 Lake Louise Conference on Intersections of Nuclear and Particle Physics.

    Google Scholar 

  39. H. Kolanski and P. Zerwas, DESY Preprint 87–175 (1987).

    Google Scholar 

  40. D. Aston et al., DPNU 87/15; SLAC-PUB-4279 (1987); to be published in Nucl. Phys. B.

    Google Scholar 

  41. L. Köpke (MARK III Collaboration), SCIPP/MARK III Memo (1986). Unpublished.

    Google Scholar 

  42. See the contributions of C. Heusch and A. Seiden to the MARK III Pow-Wow; SLAC-Report 323 (1988).

    Google Scholar 

  43. J. Adler et al., (MARK III), to be published. T. Bolton, Ph.D. thesis, M.I.T. (1988); unpublished.

    Google Scholar 

  44. R. Baltrusaitis et al., (MARK III), Phys. Rev. D35, 2077 (1987).

    Google Scholar 

  45. C. Edwards et al., (Crystal Ball Collaboration), Phys. Rev. Lett. 48, 458 (1982).

    Article  CAS  Google Scholar 

  46. J. Adler et al.,(MARK III), Contribution to the Proceedings of the EPS Conference, Uppsala (1987), G. Dubois, editor. Note that the MARK III data are severely limited due to the absence of a neutral trigger; this is presently being installed.

    Google Scholar 

  47. D. Alde et al., Nucl. Phys. B269, 485 (1986).

    Article  CAS  Google Scholar 

  48. Should this scenario turn out to be correct, the confusing nomenclature of these states would obviously be redefined.

    Google Scholar 

  49. R. Baltrusaitis et al., (MARK III), Phys. Rev. Lett. 56, 107 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. D. Alde et al., Phys. Lett. 177B, 120 (1986).

    Google Scholar 

  51. The interest of the final state ηη’ in the context of gluonium searches has been discussed by S.S. Gershtein et al., Z. Phys. C24, 305 (1984).

    Google Scholar 

  52. H.F. Lipkin, Phys. Lett. 109B, 326 (1982).

    CAS  Google Scholar 

  53. A. Etkin et al., Phys. Lett. 165B, 217 (1985).

    CAS  Google Scholar 

  54. J. Adler et al., (MARK III Collaboration), as quoted by G. Dubois in Proceedings of the EPS Conference, Uppsala (1987)

    Google Scholar 

  55. L. Stanco et al., (DM2 Collaboration), LAL 87–42 (1987).

    Google Scholar 

  56. For recent gluonium reviews, see, e.g., F.E. Close, R/XL-87–072 to be published in Rep. Progr. Phys.; F. Couchot, LAL 87–40 (1987); C.A. Heusch, Proceedings, Multiparticle Symposium, Seewinkel, World Scientific, Singapore (1986); M.S. Chanowitz, in Hadron ‘87, KEK, Tsukuba (1987).

    Google Scholar 

  57. J.D. Bjorken, Proceedings, 1979 SLAC Summer School, A. Mosher ed., SLAC Report 224 (1980). See also M. Chanowitz, Ref. 53, and S. Gershtein et al., Ref. 44.

    Google Scholar 

  58. S. Godfrey, Phys. Lett. 141B, 439 (1984).

    CAS  Google Scholar 

  59. S.J. Lindenbaum, Comments Nucl. Part. Physics 13, 285 (1984).

    CAS  Google Scholar 

  60. M. Chanowitz (Proc. V I th International Workshop on Photon-Photon Colli sions, World Scientific, Singapore (1984)) defined this relative gluon affinity as “stickiness” \(S = {\left( {\frac{{ms}}{{k*(\not \upsilon \to \gamma X)}}} \right)^3}\frac{{\Gamma (Y \to \gamma X)}}{{\Gamma (X \to \gamma \gamma )}}.\). This measure can serve as a comparison of states with equal quantum number: for J PC=0−+, S(ι):S(η′):S(η) =(>65):4:1; for J PC=2++, S(Θ):S(f′):S(f)=(>20):3:1.

    Google Scholar 

  61. The values for and R V , given by C.A. Heusch in Ref. 49 have to be updated using recent MARK II data on γγι(1460) limits- G. Gidal, et al., Phys. Rev. Lett. 59, 2016 (1987).

    Google Scholar 

  62. F. Binon (GAMS Collaboration), Proceedings of the Hadron ‘87 Conference, KEK, Tsukuba (1987); a similar signal may have been seen by W.D. Apel et al., Nucl. Phys. B193, 269 (1983).

    Google Scholar 

  63. S.I. Bityukov et al., Phys. Lett. B188, 383 (1987).

    Google Scholar 

  64. F.S. Close, H.J. Lipkin, RAL 87/046 (1987), and M. Boutemeur, in Hadrons, Quarks, and Gluons, J. Tran Thanh Van, ed., Editions Frontières, Paris (1987).

    Google Scholar 

  65. This feature was postulated long ago: T. Barnes, Z. Phys. C10, 275 (1981). Note, however, that preliminary data of both the DM2 and MARK III Collaborations show indications of a non-pseudoscalar enhancement at m(4π) 1285 MeV/c2, in the radiative decay process J/ψγπ + π π + π . If this state is to be identified with f 1 (1285), the argument has to be modified from “absence” to “suppression” of states not accessible to two transverse gluons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Heusch, C.A. (1990). Light-Quark Spectroscopy from Charmonium Decay. In: Zichichi, A. (eds) The Superworld II. The Subnuclear Series, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7467-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7467-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7469-5

  • Online ISBN: 978-1-4684-7467-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics