Skip to main content

A Novel System Using the Expression of Chloramphenicol Acetyltransferase in Eukaryotic Cells Allows the Quantitative Study of Promoter Elements

  • Chapter
Eukaryotic Gene Expression

Abstract

As the number of isolated putative eukaryotic promoter sequences has increased, so has the need for an accurate means of measuring the function of these sequences. The in vitro transcription systems developed by Manley et al. (1980) and Weil et al. (1979) offer one approach. However, it is becoming clear that the in vitro transcription systems may respond to different regulatory signals and thus do not afford the ideal system for the study of in vivo transcriptional control (Benoist and Chambon, 1980). The study of promoters after introduction into tissue-culture cells is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benoist, C., and Chambon, P., 1980, Deletions covering the putative promoter region of early mRNAs of simian virus 40 do not abolish T-antigen expression, Proc. Natl. Acad. Sci. U.S.A. 77: 3865–3869.

    Article  PubMed  CAS  Google Scholar 

  • Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promoter region, Nature (London) 290: 304–310.

    Article  CAS  Google Scholar 

  • Cohen, J., Eccleshall, T., Needleman, R., Federoff, H., Buchferer, B., and Marmur, J., 1980, Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase, Proc. Natl. Acad. Sci. U.S.A. 77: 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  • De Villiers, J., and Schaffner, W., 1981, A small segment of polyoma virus DNA enhances the expression of a cloned 3-globin gene over a distance of 1400 base pairs, Nucleic Acid Res. 9: 6251–6264.

    Article  PubMed  Google Scholar 

  • Gorman, C., Moffat, L., and Howard, B., 1982a, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Mol. Cell. Biol. 2: 1044–1051.

    PubMed  CAS  Google Scholar 

  • Gorman C., Merlino, G., Willingham, M., Pastan, I., and Howard, B., 1982b, The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA mediated transfection, Proc. Natl. Acad. Sci. U.S.A. 77: 6777–6781.

    Article  Google Scholar 

  • Graham, F., and van der Eb, A., 1978, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52: 456–457.

    Article  Google Scholar 

  • Gruss, P., Dhar, R., and Khoury, G., 1981, Simian virus 40 tandem repeated sequences as an element of the early promoter, Proc. Natl. Acad. Sci. U.S.A. 78: 943–947.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1978, How do eukaryotic ribosomes select initiation regions in messenger RNA?, Cell 15: 1109–1123.

    Article  PubMed  CAS  Google Scholar 

  • Laimons, L., Khoury, G., Gorman, C., Howard, B., and Gruss, P., 1982, Host specific activation of transcription by tandem repeats from SV40 and Moloney murine sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 79: 6453–6457.

    Article  Google Scholar 

  • Levinson, B., Khoury, G., Vande Woude, G., and Gruss, P., 1982, Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus, Nature (London) 295: 568–572.

    Article  CAS  Google Scholar 

  • Manley, J., Fire, A., Cano, A., Sharp, P., and Gefter, M., 1980, DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract, Proc. Natl. Acad. Sci. U.S.A. 77: 3855–3859.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, P., Parker, V., Gluzman, Y., and Maniatis, T., 1981, Identification of DNA sequences required for transcription of the human al globin gene in a new SV40 host—vector system, Cell 27: 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Merlino, G., Vogeli, G., Yamamoto, T., de Crombrugghe, B., and Pastan, I., 1981, Accurate in vitro transcriptional initiation of the chick a2 (I) collagen gene, J. Biol. Chem. 256: 11251–11258.

    PubMed  CAS  Google Scholar 

  • Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M., and Chambon, P., 1981, The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants, Nucleic Acids Res. 9: 6047–6068.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, R., and Berg, P., 1980, Expression of a bacterial gene in mammalian cells, Science 209: 1422–1427.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, R., and Berg, P., 1981, Factors governing the expression of bacterial genome, Mol. Cell. Biol. 1: 449–459.

    PubMed  CAS  Google Scholar 

  • Mulligan, R., Howard, B., and Berg, P., 1979, Synthesis of rabbit ß-globin in cultured monkey cells following infection with a S V4013-globin recombinant gene in mammalian cells, Nature (London) 277: 108–114.

    Article  CAS  Google Scholar 

  • Parker, B., and Stark, G., 1979, Regulation of simian virus 40 transcription: Sensitive analysis of the RNA species present early in infections by virus or viral DNA, J. Virol. 31: 360–369.

    PubMed  CAS  Google Scholar 

  • Radloff, R., Bauer, W., and Vinograd, J., 1967, A dye buoyant-density method for the detection and isolation of closed circular duplex DNA: The closed circular DNA in HeLa cells, Proc. Natl. Acad. Sci. U.S.A. 57: 1514–1521.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, L., Seligohn, R., and Lerner, S., 1978, Simplified radioenzymatic assay for chloramphenicol, Antimicrob. Agents Chemother. 13: 25–29.

    Article  Google Scholar 

  • Schumperli, D., Howard, B., and Rosenberg, M., 1982, Efficient expression of Escherichia coli galactokinase gene in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 79: 257.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J., 1973, Phage Pl cryptic: Location and regulation of prophage genes, Virology 53: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, W., 1967, The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli, J. Biol. Chem. 242: 687–693.

    PubMed  CAS  Google Scholar 

  • Shaw, W., 1975, Chloramphenicol acetyltransferase from resistant bacteria, Methods Enzymol. 53: 737–754.

    Article  Google Scholar 

  • Shaw, W., and Brodsky, R., 1978, Characterization of chloramphenicol acetyltransferase from chloramphenicol resistant Staphylococcus aureus, J. Bacteriol. 95: 28–36.

    Google Scholar 

  • Smith, A., and Smith, P., 1978, Improved enzymatic assay of chloramphenicol, Clin. Chem. 24: 1452–1457.

    PubMed  CAS  Google Scholar 

  • Southern, P., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl. Genet. 1: 327–341.

    PubMed  CAS  Google Scholar 

  • Southern, P., Howard, B., and Berg, P., 1981, Construction and characterization of SV40 recombinants with 3-globin cDNA substitutions in their early region, J. Mol. Appl. Genet. 1: 177–190.

    PubMed  CAS  Google Scholar 

  • Summers, W., and Summers, W., 1977, 125-I deoxycytidine used in a rapid, sensitive, and specific assay for herpes simplex virus type 1 thymidine kinase, J. Virol. 24: 314–318.

    PubMed  CAS  Google Scholar 

  • Vogeli, G., Ohkubo, H., Sobel, M., Yamada, Y., Pastan, I., and de Crombrugghe, B., 1981, Structure of the promoter of chicken a2 type I collagen gene, Proc. Natl. Acad. Sci. U.S.A. 78: 5334–5338.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, M., Sharp, J., and Summers, W., 1981, Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1, Proc. Natl. Acad. Sci. U.S.A. 78: 1443–1445.

    Google Scholar 

  • Weil, P., Luse, D., Segall, J., and Roeder, R., 1979, Selective and accurate initiation of transcription at the Ad 2 major late promoter on a soluble system dependent on purified RNA polymerase II and DNA, Cell 18: 469–484.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., de Crombrugghe, B., and Pastan, I., 1980, Identification of a functional promoter of Rous sarcoma virus, Cell 22: 787–797.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Gorman, C., Laimons, L., Merlino, G.T., Gruss, P., Khoury, G., Howard, B. (1984). A Novel System Using the Expression of Chloramphenicol Acetyltransferase in Eukaryotic Cells Allows the Quantitative Study of Promoter Elements. In: Kumar, A. (eds) Eukaryotic Gene Expression. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7459-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7459-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7461-9

  • Online ISBN: 978-1-4684-7459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics