Skip to main content

Nucleotide Sequence and Structure Determination of Rabbit 18 S Ribosomal RNA

  • Chapter
Eukaryotic Gene Expression

Abstract

Ribosomes accomplish their translational role within a highly organized nucleoprotein structure. The specific aim for research on ribosomes, therefore, is to elucidate the architecture and eventually the function of these multi-molecular complexes. Prokaryotic 70 S ribosomes can be dissociated into a small 30 S subunit and a large 50 S subunit. The 30 S subunit contains 16 S ribosomal RNA (rRNA) in association with 21 proteins, while the 50 S subunit contains a 5 S rRNA and the 23 S rRNA combined with 31 proteins. Eukaryotic 80 S ribosomes are appreciably larger. Their small 40 S subunit is comprised of 18 S rRNA and approximately 30 proteins, while the large 60 S subunit is much more complex, with one molecule each of 5 S, 5.8 S, and 28 S rRNA and 45–50 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Choi, Y. C., and Busch, H., 1978, Modified nucleotides in T1 RNase oligonucleotides of 18 S ribosomal RNA of the Novikoff hepatoma, Biochemistry 17: 2551–2560.

    Article  PubMed  CAS  Google Scholar 

  • Donis-Keller, H., Maxam, A. M., and Gilbert, W., 1977, Mapping adenines, guanines and pyrimidines in RNA, Nucleic Acids Res. 4: 2527–2538.

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite, S., and Garrett, R. A., 1981, Secondary structure of prokaryotic 5 S ribosomal ribonucleic acids: A study with ribonucleases, Biochemistry 20: 7301–7307.

    Article  PubMed  CAS  Google Scholar 

  • Favorova, O. O., Fasiolo, F., Keith, G., Vassilenko, S. K., and Ebel, J.-P., 1981, Partial digestion of tRNA aminoacyl—tRNA synthetase complexes with cobra venom ribonuclease, Biochemistry 20: 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Lake, J. A., 1980, Ribosome structure and functional sites, in: Ribosomes: Structure, Function and Genetics( G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds.), pp. 207–236, University Park Press, Baltimore.

    Google Scholar 

  • Lockard, R. E., and Kumar, A., 1981, Mapping tRNA structure in solution using double-strand specific ribonuclease V, from cobra venom, Nucleic Acids Res. 9: 5125–5140.

    Article  PubMed  CAS  Google Scholar 

  • Lockard, R. E., and RajBhandary, U. L., 1976, Nucleotide sequence at the 5’ termini of rabbit a and 13 globing mRNA, Cell 9: 747–760.

    Article  CAS  Google Scholar 

  • Lockard, R. E., Alzner-Deweerd, B., Heckman, J. E., MacGee, J., Tabor, M. W., and RajBhandary, U. L., 1978, Sequence analysis of 5’ 32P-labeled mRNA and tRNA using polyacrylamide gel electrophoresis, Nucleic Acids Res. 5: 37–56.

    Article  PubMed  CAS  Google Scholar 

  • Lockard, R. E., Connaughton, J. F., and Kumar, A., 1982, Nucleotide sequence of the 5’ and 3’ domains for rabbit 18 S ribosomal RNA, Nucleic Acids Res. 10: 3445–3457.

    Article  PubMed  CAS  Google Scholar 

  • Maden, B. E. H., and Kahn, M. S. N., 1977, Methylated nucleotide sequences in HeLa-cell ribosomal ribonucleic acid, Biochem. J. 167:211–221.

    PubMed  CAS  Google Scholar 

  • Maden, B. E. H., and Salim, M., 1974, The methylated nucleotide sequences in HeLa cell ribosomal RNA and its precursors, J. Mol. Biol. 88: 133–164.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H. F., and Woese, C. R., 1981, Secondary structure of 16 S ribosomal RNA, Science 212: 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Ofengand, J., and Liou, R., 1980, Evidence for pyrimidine—pyrimidine cyclobutane dimer formation in the covalent cross-linking between transfer ribonucleic acid and 16 S ribonucleic acid at the ribosomal P site, Biochemistry 18: 4814–4822.

    Article  Google Scholar 

  • Ofengand, J., Gornicki, P., Chakraburtty, K., and Nurse, K., 1982, Functional conservation near the 3’ end of eukaryotic small subunit RNA: Photochemical cross-linking of P site-bound acetylvalyl-tRNA to 18 S RNA of yeast ribosomes, Proc. Natl. Acad. Sci. U.S.A. 79: 2807–2812.

    Article  Google Scholar 

  • Peattie, D. A., 1979, Direct chemical method for sequencing RNA, Proc. Natl. Acad. Sci. U.S.A. 76: 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  • Peattie, D. A., and Gilbert, W., 1980, Chemical probes for higher-order structure in RNA, Proc. Natl. Acad. Sci. U.S.A. 77: 4679–4682.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J. B., Taylor, B. H., Thurlow, D. L., Ofengand, J., and Zimmerman, R. A., 1982, Covalent crosslinking of tRNA’ to 16S RNA at the ribosomal P site: Identification of crosslinked residues, Proc. Natl. Acad. Sci. U.S.A. 79: 5450–5454.

    Article  PubMed  CAS  Google Scholar 

  • Rubstov, P. M., Musakhanov, M. M., Zakharyev, V. M., Krayev, A. S., Skryabin, K. G., and Bayer, A. A., 1980, The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae, Nucleic Acids Res. 8: 5779–5794.

    Article  Google Scholar 

  • Salim, M., and Maden, B. E. H., 1981, Nucleotide sequence of Xenopus laevis 18S ribosomal RNA inferred from gene sequence, Nature (London) 291: 205–208.

    Article  CAS  Google Scholar 

  • Stiegler, P., Carbon, P., Ebel, J.-P., and Ehresmann, C., 1981a, A general secondary structure model for procaryotic and eucaryotic RNAs of the small ribosomal subunits, Eur. J. Biochem. 120: 487–495.

    Article  CAS  Google Scholar 

  • Stiegler, P., Carbon, P., Zuker, M., Ebel, J.-P., and Ehresmann, C., 198lb, Structural organization of the 16S RNA from E. coli: Topography and secondary structure, Nucleic Acids Res. 9:2153–2206.

    Article  CAS  Google Scholar 

  • Wrede, P., Wurst, R., Vournakis, J., and Rich, A., 1979, Conformational changes of yeast tRNA and E. coli tRNAi as indicated by different nuclease digestion patterns, J. Biol. Chem. 254: 9068–9615.

    Google Scholar 

  • Wurst, R. M., Vournakis, J. J., and Maxam, A. M., 1978, Structure mapping of 5“2P-labeled RNA with SI nuclease, Biochemistry 17: 4493–4499.

    Article  PubMed  CAS  Google Scholar 

  • Zwieb, C., Glotz, C., and Brimaccombe, R., 1981, Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species, Nucleic Acids Res. 9: 3621–3640.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Connaughton, J.F., Kumar, A., Lockard, R.E. (1984). Nucleotide Sequence and Structure Determination of Rabbit 18 S Ribosomal RNA. In: Kumar, A. (eds) Eukaryotic Gene Expression. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7459-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7459-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7461-9

  • Online ISBN: 978-1-4684-7459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics