Skip to main content

Biochemical Mechanisms of Oxidant-Induced Cell Injury

  • Chapter
Free Radicals, Lipoproteins, and Membrane Lipids

Part of the book series: NATO ASI Series ((NSSA,volume 189))

  • 124 Accesses

Abstract

With the current knowledge that oxidants are generated in inflammatory responses of several kinds and participate in the development of tissue injury, it is clearly important to gain greater insight into the mechanisms by which oxidants damage cells and extracellular tissues. For the past few years we have studied the effects on target cells of oxidants that are generated by stimulated leukocytes,in order to gain insight into the mechanisms by which externally generated oxidants cause functional and structural damage to these target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nathan, CF, Silverstein SC, Brukner LH, Cohn ZA. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med. 1979: 149: 100–113.

    PubMed  CAS  Google Scholar 

  2. Simon RH, Scoggin CH, Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. Biol. Chem. 1981: 256: 7181–7186.

    PubMed  CAS  Google Scholar 

  3. Weiss SJ, Young J., LoBuglio AF, Slivka A. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 1981: 68: 714–724.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Jarrick BA, Nathan CF, Griffith OW, Cohn ZA. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J. Biol. Chem. 1982: 257 (3): 1231–1237.

    Google Scholar 

  5. Harlan JM, Levine JD, Callahan KS, Schwartz BR, Harker LA. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J. Clin. Invest. 1984: 73: 706–713.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sies H, Gerstenecker C, Menzel H, Flohe L. Oxidation in the NADP-system and release of GSSG from hemoglobin-free perfused rat liver during peroxidative oxidation of glutathione by hydroperoxidase. FEBS Lett. 1972: 27: 171–175.

    Article  CAS  PubMed  Google Scholar 

  7. Sies H, Grafp, Estrela, JM. Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endopiasmic reticulum in intact liver. Proc. Natl. Acad. Sci. 981: 78: 3358.

    Article  CAS  Google Scholar 

  8. Schraufstatter IU, Hyslop PA, Spragg RG, Cochrane CG. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells. J. Clin. Invest. 1985: 76: 1131–1139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Orrenius S, Jewell SA, Bellomo G, Thor H, Jones DP, Smith MT. Regulation of calcium regulation in the hepatocyte-a critical role of glutathione. In: Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, editors. Raven Press, NY, 261–273, 1983.

    Google Scholar 

  10. Jewell SA, Bellomo G, Thor H, Orrenius, S, Smith, MT. Bleb formation in hepatocytes during drug metabolism is caused by distrubances in thiol and calcium ion homeostasis. Science. 1982: 217: 1257.

    Article  CAS  PubMed  Google Scholar 

  11. Bellomo G, Jewell SA, Thor H, Orrenius S. Regulation of intracellular calcium compartmentation: Studies with isolated hepatocytes and t-butyl hydroperoxide. Proc. Natl. Acad. Sci. 1982: 79: 6842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hyslop PA, Hinshaw DB, Schraufstatter IU, Sklar, LA, Spragg RG, Cochrane CG. Intracellular calcium homeostasis during hydrogen peroxide injury to cultured P388D11 cells. J. Cell Physiol. 1986: 129: 356.

    Article  CAS  PubMed  Google Scholar 

  13. Hinshaw DB, Sklar LA, Bohl BP, Schraufstatter IU, Hyslop PA, Rossi MW, Spragg RG, Cochrane CG. Cytoskeletal and morphologic impact of cellular oxidant injury. Am. J. Path. 1986: 123: 454–464.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Hinshaw DB, Armstrong BC, Burger JM, Beals TF, Hyslop PA. ATP and microfilaments in cellular oxidant injury. Am. J. Path. 1988: 132: 479–488.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Spragg RG, Hinshaw DB, Hyslop PA, Schraufstatter IU, Cochrane CG. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells following oxidant injury. J. Clin. Invest. 1985: 76: 1471–1476.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hyslop PA, Hinshaw DB, Halsey WA Jr. et al. Mechanisms of oxidant mediated cell injury: The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem. 1988: 263: 1665.

    PubMed  CAS  Google Scholar 

  17. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG. Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 1986: 77: 1312.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane CG. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. 1986: 83: 4908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Birnboim HC, Kanabus-Kominska M. The production of DNA strand breaks in human leukocytes by superoxide anion may involve a metabolic process. Proc Natl Acad Sci 1987: 82: 6820–4.

    Article  Google Scholar 

  20. Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J. Clin. Invest. 1988: 1040–1050.

    Google Scholar 

  21. Floyd RA. DNA-ferrous iron catalyzed hydroxyl free radical formation from hydrogen peroxide. Biochem Biophys Res Comm 1981: 1209–15.

    Article  Google Scholar 

  22. Frenkel K, Chrzan K, Troll W, Teebor GW, Steinberg JJ. Radiation-like modification of bases in DNA exposed to tumor promoter-activated polymorphonuclear leukocytes. Cancer Res 1986: 46: 5533–40.

    PubMed  CAS  Google Scholar 

  23. de Mello Filho AC, Meneghini R. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species. Biochim Biophys Acta 1985: 847: 82–9.

    Article  Google Scholar 

  24. Jackson J, Schraufstatter IU, Hyslop PA, Vosbeck K, Sauerheber R, Weitzman SA, Cochrane CG. Role of oxidants in DNA damage: Hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke. J Clin Invest 1987: 80: 1090–1095.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jackson JH, Gajewski E, Fuciarelli AE, Schraufstatter, IU, Hyslop, PA, Cochrane, CG, Dizdarogler M. Damage to the bases in DNA induced by stimulated neutrophils. J. Clin. Invest. 1988: 84.

    Google Scholar 

  26. Ochi T, Cerutti PA. Clastogenic action of hydroperoxy-5, 8,11,13-icosatetranoic acids on the mouse embryo fibroblasts C3H/10 T1/2. Proc Natl Acad Sci 1987: 84: 990–4.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Cochrane, C.G., Hyslop, P.A., Jackson, J.H., Schraufstatter, I.U. (1990). Biochemical Mechanisms of Oxidant-Induced Cell Injury. In: de Paulet, A.C., Douste-Blazy, L., Paoletti, R. (eds) Free Radicals, Lipoproteins, and Membrane Lipids. NATO ASI Series, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7427-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7427-5_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7429-9

  • Online ISBN: 978-1-4684-7427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics