Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 119))

  • 575 Accesses

Abstract

Toeplitz matrices represent the discrete analogue of convolutions, and the problem of inverting them is often encountered. The inverse of a Toeplitz matrix is no longer Toeplitz. However, thanks to a formula of Gohberg and Semençul, it can be expressed in terms of two closely related triangular Toeplitz matrices. Here we use an analogy with predicting stationary stochastic processes to motivate a simple proof of this formula, as well as of the main facts in the classical trigonometric moment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhiezer N. I. The Classical Moment Problem. Hafner, New York, 1965.

    MATH  Google Scholar 

  2. Baxter G., Hirschman I. I. Jr. An explicit inversion formula for finite-section Wiener-Hopf operators. Bull. Amer. Math. Soc., 70: 820–823, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  3. Gohberg I. C., Feldman I. A. Convolution Equations and Projection Methods for their Solution. Transi. Math. Monographs 41, Amer. Math. Soc., Providence, R.I., 1974.

    Google Scholar 

  4. Gohberg I. C., Feldman I. A. Projection methods for solving Wiener-Hopf equations. Acad. Sci. Moldovian SSR. Inst. Math, with Computing Center, Akad. Nauk Moldov. SSR, Kishiniev, 1967. ( Russian. )

    Google Scholar 

  5. Gohberg I., Heinig G. Inversion of finite Toeplitz matrices composed of elements of a noncommutative algebra. Revue Roumaine de Mathématiques Pures et Appliquées, 19: 623–663, 1974.

    MathSciNet  Google Scholar 

  6. Gohberg I., Semençul A. A. On the inverse of finite Toeplitz matrices and their continuous analogs. Math. Issled., 7:238–253, 1972. (Russian.)

    MATH  Google Scholar 

  7. Heinig G., Rost K. Algebraic methods for Toeplitz-like matrices and operators. In Operator Theory: Advances and Applications, 13, Birkhäuser, Basel, Boston, Berlin, 1984.

    Google Scholar 

  8. Kailath T., Kung S. Y., Morf M. Displacement ranks of matrices and linear equations. J. Math. Anal. Appl., 68:395–407, 1979; Bull. Amer. Math. Soc., 1: 769–773, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kailath T., Viera A., Morf M. Inverses of Toeplitz operators, innovations, and orthogonal polynomials. SIAM Rev., 20: 106–119, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kutikov L. M. Inversion of correlation matrices and some problems of selftuning. Izv. Akad. Nauk SSSR, Ser. Tech.-Cybernetics, 5, 1965. (Russian.)

    Google Scholar 

  11. Kutikov L. M. On the structure of matrices, inverse to correlation matrices for vector random processes. J. of Computational Math, and Math. Physics, 7(4), 1967. (Russian.)

    MathSciNet  Google Scholar 

  12. Landau H. J. Maximum entropy and the moment problem. Bull. Amer. Math. Soc., 16: 47–77, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  13. Moments in Mathematics. Proc. Symp. Appl. Math., 37. Amer. Math. Soc., Providence, R.I., 1987. H.J. Landau, ed.

    Google Scholar 

  14. Levinson N. The Wiener rms error criterion in filter design and prediction. J. Math. Phys., 25: 261–278, 1947.

    MathSciNet  Google Scholar 

  15. Trench W. F. An algorithm for the inversion of finite Toeplitz matrices. J. SIAM, 12: 515–522, 1964.

    MathSciNet  MATH  Google Scholar 

  16. Trench W. F. A note on a Toeplitz inversion formula. Lin. Alg. Appl., 129: 55–61, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yaglom A. M. A Introduction to the Theory of Stationary Random Functions. Prentice-Hall, Englewood Cliffs, NJ, 1962.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Walter Gautschi on his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser

About this chapter

Cite this chapter

Gohberg, I., Landau, H.J. (1994). Prediction and the Inverse of Toeplitz Matrices. In: Zahar, R.V.M. (eds) Approximation and Computation: A Festschrift in Honor of Walter Gautschi. ISNM International Series of Numerical Mathematics, vol 119. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-7415-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7415-2_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-7417-6

  • Online ISBN: 978-1-4684-7415-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics