Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 231))

  • 237 Accesses

Abstract

Recent advances in materials fabrication and nanolithography have made possible a generation of semiconducting structures whose conductance is governed by quantum mechanical phenomena. In particular, nanostructures on Si MOSFETs and GaAs MODFETs have shown modulations in their conductance versus gate voltage characteristics that have been attributed to quantum mechanical effects. In this paper, we review a modeling scheme which gives a unified way of understanding how these quantum effects are affected by temperature, mobility, voltage, and the structure of the device. This model provides not only a qualitative understanding of the various quantum phenomena, but also a basis for developing efficient computational algorithms for modeling specific devices. We have called this scheme the convolution method because most of the calculations can be written in terms of separate convolutions involving the individual phenomena of temperature, mobility, voltage, and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrikosov, A. A., Gorkov, L. P., Dzyaloshinski, I. E., 1963, “Methods of Quantum Field Theory in Statistical Physics,” Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Al’tshuler, B. L., 1985, Fluctuations in the Extrinsic Conductivity of Disordered Conductors, Sov. Phys. JETP Lett., 41: 648.

    Google Scholar 

  • Antoniadis, D. A., Warren, A. C., Smith, H. I., 1985, Quantum Mechanical Effects in Very Short and Very Narrow Channel MOSFETs, IEDM Tech. Dig., 562.

    Google Scholar 

  • Ashcroft, N. W. Mermin, N. D., 1976, “Solid State Physics,” Holt, Rinehart, and Winston, New York.

    Google Scholar 

  • Bagwell, P. F., 1988, “Quantum Mechanical Transport Phenomenon in Nano-structured Inversion Layers,” S. M. Thesis, MIT.

    Google Scholar 

  • Bagwell, P. F., Antoniadis, D. A., Orlando, T. P., 1989, Quantum Mechanical and Non-Stationary Transport Phenomenon in Nanostructured Silicon Inversion Layers, in: “Advanced MOS Device Physics,” N. Einspruch and G. Gildenblat, ed., Academic Press, San Diego.

    Google Scholar 

  • Bagwell, Phillip F., Orlando, Terry P., 1989a, Landauer’s Conductance Formula and its Generalization to Finite Voltages, Phys. Rev. B, 40: 1456.

    Google Scholar 

  • Bagwell, P. F., Orlando, T. P., 1989b, Broadened Conductivity Tensor and Density of States for a Superlattice Potential in One, Two, and Three Dimensions, Phys. Rev. B, 40: 3735.

    Google Scholar 

  • Bernstein, G., Ferry, D. K., 1987, Negative Differential Conductivity in Lateral Surface Superlattices, J. Vac. Sci. Technol. B, 5: 964.

    Google Scholar 

  • Büttiker, M., Imry, Y., Landauer, R., Pinhas, S., 1985, Generalized Many-Channel Conductance Formula with Application to Small Rings, Phys. Rev. B, 31: 6207.

    Google Scholar 

  • Büttiker, M., 1986, Role of Quantum Coherence in Resistors, Phys. Rev. B, 33:3020. See also Büttiker, M., 1988, Coherent and Sequential Tuneling in Series Barriers, IBM J. Res. Dev., 32: 63.

    Google Scholar 

  • Fischer, Daniel S., Lee, Patrick A., 1981, Relation Between Conductivity and Transmission Matrix, Phys. Rev. B, 23: 6851.

    Google Scholar 

  • Glazman, L. I., Khaetskii, A. V., 1988, Nonlinear Quantum Conductance of a Point Contact, JETP Lett., 48: 591.

    ADS  Google Scholar 

  • Glazman, L. I., Khaetskii, A. V., 1989, Nonlinear Quantum Conductance of a Lateral Microconstraint in a Heterostructure, Europhys. Lett., 9: 263.

    Google Scholar 

  • Ismail, K., Chu, W., Antoniadis, D. A., Smith, Henry I., 1988, Surface-Superlattice Effects in a Grating-Gate GaAs/GaAlAs Modulation-Doped Field- Effect-Transistor, Appl. Phys. Lett., 52: 1071.

    Google Scholar 

  • Ismail, K., Chu, W., Yen, A., Antoniadis, D. A., Smith, Henry I., 1989a, Negative Transconductance and Negative Differential Resistance in a Grid-Gate Modulation Doped Field-Effect Transistor, Appl. Phys. Lett., 54: 460.

    Google Scholar 

  • Ismail, K., Chu, W., Antoniadis, D. A., Smith, Henry I., 1989b, One Dimensional Subbands and Mobility Modulation in GaAs/AlGaAs Quantum Wires, Appl. Phys. Lett., 54: 1130.

    Google Scholar 

  • Ismail, Khalid, 1989, “The Study of Electron Transport in Field-Induced Quantum Wells on GaAs/AlAs”, Ph. D. Thesis, MIT.

    Google Scholar 

  • Kittel, C., 1986, “Introduction to Solid State Physics”, Wiley, New York.

    Google Scholar 

  • Kouwenhoven, L. P., van Wees, B. J., Harmans, C. J. P. M., Williamson, J. G., van Houten, H., Beenakker, C. W. J., Foxon, C. T., Harris, J. J., 1989, Nonlinear Conductance of Quantum Point Contacts, Phys. Rev. 13., 39: 8040.

    Article  ADS  Google Scholar 

  • Landauer, R., 1957, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, IBM J. Res. Dev., 1: 223.

    Google Scholar 

  • Landauer, Rolf, 1970, Electrical Resistance of Disordered One Dimensional Lattices, Phil. Mag., 21: 683.

    Google Scholar 

  • Landauer, Rolf, 1987, Electrical Transport in Open and Closed Systems, Z. Phys. B., 68: 217.

    Google Scholar 

  • Landauer, Rolf, 1989, Conductance Determined by Transmission: Probes and Quantized Constriction Resistance, to appear in J. Phys. Cond. Matt..

    Google Scholar 

  • Lee, P. A., Stone, A. D., 1985, Universal Conductance Fluctuations in Metals, Phys. Rev. Lett., 55: 1622.

    Google Scholar 

  • Madelung, O., 1978, “Introduction to Solid State Theory,” Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Payne, M. C., 1989, Electrostatic and Electrochemical Potentials in Quantum Trans-port, J. Phys. Cond. Matt., 1: 4931.

    Google Scholar 

  • Rickayzen, G., 1980, “Green’s Functions and Condensed Matter,” Academic Press, New York.

    Google Scholar 

  • Scott-Thomas, J. H. F., Kastner, M. A., Antoniadis, D. A., Smith, Henry I., Field, Stuart, 1988, Si MOSFETs with 70nm Slotted Gates for Study of Quasi One Dimensional Quantum Transport, J. Vac. Set. Technol. B, 6: 1841.

    Google Scholar 

  • Skocpol, W. J., Mankiewich, P. M., Howard, R. E., Jackel, L. D., Tennant, D. M., Stone, A. D., 1986, Universal Conductance Fluctuations in Silicon Inversion Layer Nanostructures, Phys. Rev. Lett., 56: 2865.

    Google Scholar 

  • Tokura, Y., Tsubaki, K., 1987, Conductivity Oscillation due to Quantum Interference in a Proposed Washboard Transistor, Appl. Phys. Lett., 51: 1807.

    Google Scholar 

  • van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., Foxon, C. T., 1988, Quantized Conductance of Point Contacts in a Two Dimensional Electron Gas, Phys. Rev. Lett., 60: 848.

    Google Scholar 

  • Warren, A. C., Antoniadis, D. A., Smith, H. I., Melngailis, J., 1985, Surface Superlattice Formation in Silicon Inversion Layers Using 0.2-/zm Period Grating-Gate Electrodes, IEEE Electron Dev. Lett., EDL-6: 294.

    Google Scholar 

  • Warren, A. C., Antoniadis, D. A., Smith, H. I., 1986, Quasi One-Dimensional Conduction in Multiple, Parallel Inversion Lines, Phys. Rev. Lett., 56: 1858.

    Google Scholar 

  • Wharam, D. A., Thornton, T. J., Newbury, R., Pepper, M., Ahmed, H., Frost, J. E. F., Hasko, D. G., Peacock, D. C., Ritchie, D. A., Jones, G. A. C., 1988, One Dimensional Transport and the Quantization of the Ballistic Resistance, J. Phys. C: Solid State Phys., 21: L209.

    Google Scholar 

  • Wolf, E. L., 1985, “Principles of Electron Tunnelling Spectroscopy”, Oxford University Press, New York. See equations (2.5) and (2. 6 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Orlando, T.P., Bagwell, P.F., Ghanbari, R.A., Ismail, K. (1990). Quantum Device Modeling with the Convolution Method. In: Chamberlain, J.M., Eaves, L., Portal, JC. (eds) Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures. NATO ASI Series, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7412-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7412-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7414-5

  • Online ISBN: 978-1-4684-7412-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics