Skip to main content

Towards Parameter Identification for Large Chemical Reaction Systems

  • Chapter

Part of the book series: Progress in Scientific Computing ((PSC,volume 2))

Abstract

A standard task in the modelling of chemical reaction systems (CRS) is the identification of rate constants in the kinetic equations from given experimental data — which is the often so-called inverse problem (IP) of chemical kinetics (as opposed to simulation, the direct problem). For sufficiently complex CRS, the modelling problem itself is already rather intricate. So there is a need for user-oriented software that allows the chemist to concentrate on the chemistry of his process under investigation. As a first step in this direction, simulation packages have been developed — such as FACSIMILE [5], CHEMKIN [15] or LARKIN [10,3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Armijo: Minimization of functions having Lipschitz-continuous first partial derivatives. Pacific J.Math. 16, 1–3 (1966).

    MathSciNet  MATH  Google Scholar 

  2. G. Bader, P. Deuflhard: A Semi-Implicit Midpoint Rule for Stiff Systems of Ordinary Differential Equations. Numer.Math., to appear (1983).

    Google Scholar 

  3. G. Bader, U. Nowak, P. Deuflhard: An Advanced Simulation Package for Large Chemical Reaction Systems. In: Aiken (ed.): Stiff Computation. Oxford University Press (1983).

    Google Scholar 

  4. H.G. Bock: Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics. In [12], p.102–125 (1981).

    Google Scholar 

  5. E.M. Chance, A.R. Curtis, I.P. Jones, CR. Kirby: FACSIMILE: a computer program for flow and chemistry simulation, and general initial value problems. Harwell, AERE Tech.Rep.R. 8775 (Dec.1977).

    Google Scholar 

  6. P. Deuflhard: A Relaxation Strategy for the Modified Newton Method. In: Buiirsch/ Oettli/ Stoer (ed.): Optimization and Optimal Control. Springer Lecture Notes 477, 59–73 (1975).

    Google Scholar 

  7. P. Deuflhard, V. Apostolescu: A Study of the Gauss-Newton Method for the Solution of Nonlinear Least Squares Problems. In: Frehse/ Pallaschke/ Trottenberg (ed.): Special Topics of Applied Mathematics. Amsterdam: North-Holland Publ., p. 129–150 (1980).

    Google Scholar 

  8. P. Deuflhard, G. Heindl: Affine Invariant Convergence Theorems for Newton’s Method and Extensions to Related Methods. SIAM J.Numer.Anal. 16, 1–10 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deuflhard, W. Sautter: On Rank-Deficient Pseudo-Inverses. J.Lin.Alg.Appl. 29, 91–111 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Deuflhard, G. Bader, U. Nowak: LARKIN — a software package for the numerical simulation of LARge systems arising in chemical reaction KINetics. In [12], p.38–55 (1981).

    Google Scholar 

  11. I.S. Duff, U. Nowak: On sparse matrix techniques in a stiff integrator of extrapolation type. Univ. Heidelberg, SFB 123: Tech.Rep. (1982).

    Google Scholar 

  12. K.H. Ebert, P. Deuflhard, W. Jäger (ed.): Modelling of Chemical Reaction Systems. Springer Series Chem.Phys. 18 (1981).

    Google Scholar 

  13. D. Garfinkel, B. Hess: Metabolic Control Mechanisms VII. A detailed computer model of the glycolytic pathway in ascites cells. J.Bio.Chem. 239, 971–983 (1954).

    Google Scholar 

  14. W.B. Gragg: On Extrapolation Algorithms for Ordinary Initial Value Problems. SIAM J. Numer. Anal. 2, 384–404 (1965).

    MathSciNet  Google Scholar 

  15. R.J. Kee, J.A. Miller, T..H. Jefferson: CHEMKIN: A General-Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package. Sandia National Laboratories, Livermore: Tech.Rep. SAND80-8003 (1980)

    Google Scholar 

  16. R.S. Martin, G. Peters, J.H. Wilkinson: Symmetric Decomposition of a Positive Definite Matrix Numer. Math. 7, 362–383 (1965).

    MathSciNet  MATH  Google Scholar 

  17. H.G. Bock: Recent Advances in Parameter Identification Techniques for ODEs. These proceedings, Chap. 7 (1983)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Birkhäuser Boston

About this chapter

Cite this chapter

Nowak, U., Deuflhard, P. (1983). Towards Parameter Identification for Large Chemical Reaction Systems. In: Deuflhard, P., Hairer, E. (eds) Numerical Treatment of Inverse Problems in Differential and Integral Equations. Progress in Scientific Computing, vol 2. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-7324-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7324-7_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3125-3

  • Online ISBN: 978-1-4684-7324-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics