Skip to main content

Membrane Topology of Cytochromes P-450: Elements and Measurement by Spectroscopic Techniques

  • Chapter
Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds

Part of the book series: NATO ASI Series Advanced Science Institutes Series ((NSSA,volume 202))

Abstract

The main concern of these lectures is: Do liver microsomal cytochromes P-450 have an oligomeric structure and is cooperativity involved in their function? Elements of topology of membrane proteins and the spectroscopic techniques used to investigate this toplogy are described. Oligomeric structure is an important element of membrane topology and information on it can be obtained from measurements of rotational diffusion of the proteins. Emphasis is therefore laid on photoselection techniques (time-dependent polarized delayed fluorescence and phosphorescence and time-dependent absorption dichroism).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.L. Jennings, Topography of membrane proteins, Annu. Rev. Biochem. 58: 999 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. K.U. Linderstrøm-Lang and J.A. Schellrnan, Protein structure and enzyme activity, in “The Enzymes”, P.D. Boyer, H. Lardy, and K. Myrbäck, eds., Academic Press, New York (1959).

    Google Scholar 

  3. A. Stier and S.A.E. Finch, Rotational diffusion of homo-and heterooligomers of cytochrome P-450: the functional significance of cooperativity and the membrane structure, in: “Frontiers in Biotransformation”, Vol. 1, K. Ruckpaul and H. Rein, eds., Taylor & Francis, London, submitted.

    Google Scholar 

  4. J.R. Abney and J.C. Owicki, Theories of protein-lipid and protein-protein interactions in membranes, in: “Progress in Protein-Lipid Interactions”, Vol. 1, A. Watts and J.J.H.H.M. De Pont, eds., Elsevier Science Publishers, Amsterdam (1985).

    Google Scholar 

  5. I. Klotz, D.W. Darnall, and N.R. Langerman, Quaternary structure of proteins, in: “The Proteins”, Vol. 1, H. Neurath and R.L. Hill, eds, Academic Press, New York (1975).

    Google Scholar 

  6. D.E. Koshland Jr., G. Nemethy, and D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5: 365 (1966).

    Article  PubMed  CAS  Google Scholar 

  7. D. Marsh, Molecular mobility in membranes, in: “Physical Properties of Biological Membranes and Their Functional Implications”, C. Hidalgo, ed., Plenum Publishing Company, New York (1988).

    Google Scholar 

  8. H. Sandermann Jr., Cooperativity of lipid-protein interactions, in: “Progress in Protein-Lipid Interactions” Vol. 2, A. Watts and J.J.H.H.M. De Pont, eds., Elsevier Science Publishers, Amsterdam (1986).

    Google Scholar 

  9. H. Frauenfelder, F. Parak, and R.D. Young, Conformational substates in proteins, Annu. Rev. Biophys. Biophys. Chem. 17: 451 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. C. Jung, F. Marlow, O. Ristau, S. Falsett. I.C. Gunsalus, and H. Frauenfelder, Accessibility and dynamics of the active site in bacterial cytochrome P-450, in: “Cytochrome P-450: Biochemistry and Biophysics”, I. Schuster, ed. Taylor & Francis, London (1989).

    Google Scholar 

  11. J. Monod, J. Wyman, and J.-P. Changeaux, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12: 88 (1965).

    Article  PubMed  CAS  Google Scholar 

  12. G.R. Welch (ed.) “Organized Multienzyme Systems: Catalytic Properties”, Academic Press Inc., Orlando (1985).

    Google Scholar 

  13. E. Sackmann and H. Träuble, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. II. Analysis of the electron spin resonance spectra of steroid labels incorporated into lipid membranes, J. Am. Chem. Soc. 94: 4491 (1972).

    Google Scholar 

  14. H. Träuble and E. Sackmann, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition, J. Am. Chem. Soc. 94: 4499 (1972).

    Article  PubMed  Google Scholar 

  15. C.J. Scandella, P. Devaux, and H.M. McConnell, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc. Natl. Acad. Sci USA 69: 2056 (1972).

    Article  PubMed  CAS  Google Scholar 

  16. M. Edidin, Rotational and translational diffusion in membranes, Annu. Rev. Biophys. Bioeng. 3: 179 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. M.D. Hollenberg, Examples of homospecific and heterospecific receptor regulation, Trends Pharmacol. Sci. 6: 242 (1985).

    Article  CAS  Google Scholar 

  18. J. Schlessinger, Signal transduction by allosteric receptor oligomerization, Trends Biochem. Sci. 13: 443 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. J.-P. Changeux, A. Devillers-Thiery, and P. Chemouilli, Acetylcholine receptor: An allosteric protein, Science 225: 1355 (1984).

    Article  Google Scholar 

  20. C.R. Hackenbrock, B. Chazotte, and S.S. Gupte, The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport, J. Bioenerg. Biomembr. 18: 331 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. J.W. DePierre and L. Ernster, Enzyme topology of intracellular membranes, Ann. Rev. Biochem. 46: 201 (1977).

    Article  PubMed  CAS  Google Scholar 

  22. M. Ingelman-Sundberg, Cytochrome P-450 organization and membrane interaction,, in: “Cytochrome P-450”, P.R. Ortiz de Montellano, ed., Plenum Press, New York (1986).

    Google Scholar 

  23. E. Schulz, A critical evaluation of methods for prediction of protein secondary structures, Annu. Rev. Biophvs. Biophvs. Chem. 17: 1 (1988).

    Article  CAS  Google Scholar 

  24. B.A. Wallace, M. Cascio, and D.L. Mielke, Evaluation of methods for the prediction of membrane protein secondary structures, Proc. Natl. Acad. Sci. USA 83: 9423 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. G.E. Tarr, S.D. Black, V.S. Fujita, and M.J. Coon, Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. USA 80: 6552 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. A. M. Lesk and C. Chothia, How different amino acid sequences determine similar protein structure: the structure and evolutionary dynamics of the globins, J. Mol. Biol. 136: 225 (1980).

    Article  PubMed  CAS  Google Scholar 

  27. C. Chothia and A.M. Lesk, Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family, J. Mol. Biol. 182: 151 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. C. De Lemos-Chiarandini, A.B. Frey, D.D. Sabatini and G. Kreibich, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209 (1987).

    Article  PubMed  Google Scholar 

  29. R. Müller, W.E. Schmidt, and A. Stier, The site of cyclic AMP-dependent protein kinase catalyzed phosphorylation of cytochrome P-450 LM2. FEBS Lett. 187: 21 (1985).

    Article  PubMed  Google Scholar 

  30. H. Furuya, T. Shimizu, K. Hirano, M. Hatano, Y. Fujii-Kuriyama, R. Raag, and T.L. Poulos, Site-directed mutageneses of rat liver cytochrome P-450d: catalytic activities toward benzphetamine and 7-ethoxycoumarin, Biochemistry: 28: 6848 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. J. Murakami, Y. Yabusaki, T. Sakaki, M. Shibata, and H. Ohkawa, A genetically engineered P-450 monooxygenase: Construction of the functional fused enzyme between rat cytochrome P-450c and NADPH-cytochrome P-450 reductase, DNA 6: 189 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. E.S. Kempner and W. Schlegel, Size determination of enzymes by radiation inactivation, Analvt. Biochem. 92: 2 (1979).

    Article  CAS  Google Scholar 

  33. E.S. Kempner and J.H. Miller, Radiation inactivation of glutamate dehydrogenase hexamer: lack of energy transfer between subunits, Science 222: 586 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. F.P. Guengerich, P.F. Churchill, C.Y. Jung and S. Fleischer, Target inactivation analysis applied to determination of rat liver proteins in the purified state and in microsomal membranes, Biochim. Biophvs. Acta 915: 246 (1987).

    Article  CAS  Google Scholar 

  35. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resoluton, Nature 318: 618 (1985).

    Article  PubMed  CAS  Google Scholar 

  36. K. Moffat, Time-resolved macromolecular crystallography, Annu. Rev. Biophys. Biophys. Chem. 18: 309 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. P. Fajer and D. Marsh, Sensitivity of saturation transfer ESR spectra to anisotropic rotation. Application to membrane systems, J. Magn. Reson. 51: 446 (1983).

    CAS  Google Scholar 

  38. D.D. Thomas, T.M. Eads, V.A. Barnett, K.M. Lindahl, D.A. Momont, and T.C. Squier, Saturation transfer EPR and triplet anisotropy: Complementary techniques for the study of microsecond rotational dynamics, in: “Spectroscopy and the Dynamics of Molecular Biological Systems”, P.M. Bayley, R.E. Dale, eds., Academic Press, London, (1985).

    Google Scholar 

  39. D. Schwarz, J. Pirrwitz, and K. Ruckpaul, Rotational diffusion of cytochrome P-450 in the microsomal membrane — evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy, Archives Biochem. Biophys. 216: 322 (1982).

    Article  CAS  Google Scholar 

  40. R.M. Cooke and I.D. Campbell, Protein structure determination by nuclear magnetic resonance, Bio Essays 8: 52 (1988)

    CAS  Google Scholar 

  41. A. Bax, Two-dimensional NMR and protein structure, Annu. Rev. Biochem. 58: 223 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. K. Wüthrich, “NMR of proteins and nucleic acids”, Wiley, New York (1986).

    Google Scholar 

  43. S.O. Smith and R.G. Griffin, High-resolution solid-state NMR of proteins, Annu Rev. Phys. Chem. 39: 511 (1988).

    Article  PubMed  CAS  Google Scholar 

  44. R. Smith, D.E. Thomas, F. Separovic, A.R. Atkins, and B.A. Cornell, Determination of the structure of a membraneincorporated ion channel, Biophys. J. 56: 307 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. T.M. Jovin and W.L.C. Vaz, Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods, Methods. Enzymol. 172: 471 (1989).

    Article  PubMed  CAS  Google Scholar 

  46. R. Greinert, H. Staerk, A. Stier, and A. Weiler, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range. J. Biochem. Biophvs. Methods. 1: 77 (1979).

    Article  CAS  Google Scholar 

  47. R. Greinert and A. Stier, Rotational diffusion of cytochrome P-450 in a reconstituted system measured by depolarization of delayed fluorescence, in: “Biochemistry, Biophysics and Regulation of Cytochrome P-450”, J.Å. Gustafsson, J. Carlstedt Duke, A. Mode, and J. Rafter, eds., Biomedical Press, Elsevier/North-Holland (1980).

    Google Scholar 

  48. R. Greinert, S.A.E. Finch, and A. Stier, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence depolarization. Xenobiotica 12: 717 (1982a).

    Google Scholar 

  49. R. Greinert, S.A.E. Finch, and A. Stier, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding. Biosci. Rep. 2: 991 (1982b).

    Article  PubMed  CAS  Google Scholar 

  50. R.J. Cherry, Transient dichroism of bacteriorhodopsin, Methods Enzymol. 88: 248 (1982).

    Article  CAS  Google Scholar 

  51. W.L.C. Vaz, R.H. Austi, and H. Vogel, The rotational diffusion of cytochrome b5 in lipid bilayer membranes, Biophvs.J. 26:415 (1979)

    Article  CAS  Google Scholar 

  52. P. Roesen and A. Stier, Kinetics of CO and 02 complexes of rabbit liver microsomal cytochrome P450, Biochem. Biophys. Res. Commun. 51: 603 (1973).

    Article  CAS  Google Scholar 

  53. F. Mitani, T. Iizuka, H. Shimada, R. Ueno, and Y. Ishimura, Flash photolysis studies on the CO complexes of ferrous cytochrome P-450scc and cytochrome P-45011β, J. Biol. Chem. 260: 12042 (1985).

    PubMed  CAS  Google Scholar 

  54. C. Richter, K.H. Winterhalter, and R.J. Cherry, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151 (1979).

    Article  PubMed  CAS  Google Scholar 

  55. S. Kawato, J. Gut, R.J. Cherry, K.H. Winterhalter, and C. Richter, Rotation of cytochrome P-450. I. Invetigation of protein-protein interaction of cytochrome P-450 in phospholipid vesicles and liver microsomes, J, Biol. Chem. 257: 7023 (1982).

    CAS  Google Scholar 

  56. J. Gut, C. Richter, R.J. Cherry, K.H. Winterhalter, and S. Kawato, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030 (1982).

    PubMed  CAS  Google Scholar 

  57. C.A. Parker, “Photoluminescence of Solutions”, Elsevier, Amsterdam (1968).

    Google Scholar 

  58. S. Kawato and K. Kinosita, Time-dependent absorption anisotropy and rotational diffusion of proteins in membranes, Biophvs.J. 36: 277 (1981).

    Article  CAS  Google Scholar 

  59. K. Kinosita Jr., A. Ikegami, and S. Kawato, On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys. J. 37: 461 (1982).

    Article  PubMed  CAS  Google Scholar 

  60. B.D. Hughes, B.A. Pailthorpe, L.T. White, and W.H. Sawyer, Extraction of membrane microvisosity from translational and rotational diffusion coefficients, Biophys. J. 37: 673 (1982).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Stier, A., Krüger, V., Eisbein, T., Finch, S.A.E. (1991). Membrane Topology of Cytochromes P-450: Elements and Measurement by Spectroscopic Techniques. In: Arinç, E., Schenkman, J.B., Hodgson, E. (eds) Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds. NATO ASI Series Advanced Science Institutes Series, vol 202. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7284-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7284-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7286-8

  • Online ISBN: 978-1-4684-7284-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics