Skip to main content

Part of the book series: NATO ASI Series Advanced Science Institutes Series ((NSSA,volume 202))

Abstract

Exposure to benzene in industry has been a problem for over a century and today it has become a problem for the entire population with the prevalence of benzene in gasoline. The first reports of the metabolites of benzene in urine included the finding of phenol (1); hydroquinone and catechol (2); trans, trans-muconic acid (3) and phenylmercapturic acid (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Schultzen and B. Nauynyn, Uber das verhalten des kohlenwasserstoffes, Arch. Anat. Physio. 1:349 (1867).

    Google Scholar 

  2. M. Nencki and P. Giacosa, Uber die oxydation der aromatischen kohlenwasserstoffe in turkoyser, Z. Physiol. Chem. 4:325 (1880).

    Google Scholar 

  3. M. Jaffe, Cleavage of the benzene ring in the organism. I. The excretion of muconic acid in the urine after ingestion of benzene. Z. Phvsiol. Chem. 62:58 (1909).

    Article  Google Scholar 

  4. S. Zbarsky and L. Young, The conversion of benzene to phenyl-mercapturic acid in the rat, J. Biol. Chem. 151:487 (1943).

    CAS  Google Scholar 

  5. D. Parke and R.T. Williams, Studies on detoxification. The metabolism of benzene: (a) the formation of phenylglucuronide and phenylsulphuric acid from 14C benzene; (b) the metabolism of 14C phenol, Biochem J. 55:337 (1953).

    PubMed  CAS  Google Scholar 

  6. D. Parke and R.T. Williams, Detoxication XLIV. Metabolism of benzene containing 14C benzene, Biochem. J. 54:231 (1954).

    Google Scholar 

  7. G.M. Rusch, B.K. Leong, and S. Laskin, Benzene Metabolism, J. Toxicol. Environ. Health Suppl 2:23 (1977).

    CAS  Google Scholar 

  8. L. Gonasun, C. M. Witmer, J. Kocsis, and R. Snyder, Benzene metabolism in mouse liver metabolism, Toxicol. Appl. Pharmacol. 26:398 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. D. Jerina, J. Daley, B. Witkop, P. Zaltzman-Nirenberg and S. Udenfriend, Role of arene oxide-oxepin system in the metabolism of aromatic substrates. I. In vitro conversion of benzene oxide to premercapturic acid and dihydrodiol, Arch. Biochem. Biophys. 128:176 (1968).

    Article  CAS  Google Scholar 

  10. A. Tunek, K. Platt, P. Bentley, and F. Oesch, Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and the effects of modification of this metabolism, Molec. Pharmacol. 14:920 (1978).

    CAS  Google Scholar 

  11. T. Sawahata and R. Neal, Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes, Mo1. Pharmaco1. 23:453 (1983).

    CAS  Google Scholar 

  12. S. Gilmour, G. Kalf, and R. Snyder, Comparison of the metabolism of benzene and its metabolite phenol in rat liver microsomes in “Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Diseases”, J.J. Kocsis, D.J. Jollow, C.M. Witmer, J.O. Nelson, and R. Snyder eds., Plenum Press, New York (1986), p. 223.

    Google Scholar 

  13. K. Nomiyama, Studies on the poisoning by benzene and its homologues. Oxidation rate of benzene and benzene poisoning, Med. J. Shinshu. Univ. 7:41 (1962).

    CAS  Google Scholar 

  14. R. Snyder, L.S. Andrews, E.W. Lee, C.M. Witmer, M. Reilly, and J.J. Kocsis, Benzene metabolism and toxicity in “Biological Reactive Intermediates”, D.J. Jollow, J.J. Kocsis, R. Snyder, H. Vainio, Plenum Press, New York (1977), p.286.

    Chapter  Google Scholar 

  15. D. Sammet, E. Lee, J.J. Kocsis, and R. Snyder, Partial heptatectomy reduces both metabolism and toxicity of benzene, J. Toxicol.. Environ. Health. 5:785 (1979).

    Article  Google Scholar 

  16. R. Snyder, F. Uzuki, L. Gonasun, E. Bromfeld, and A. Wells, The metabolism of benzene in vitro. Toxicol. Appl. Pharmacol. 11:346 (1967).

    Article  CAS  Google Scholar 

  17. J.J. Kocsis, S. Harkaway, M.C. Santoyo, and R. Snyder, Dimethyl sulfoxide: Interactions with aromatic hydrocarbons, Science 160:427 (1968).

    Article  PubMed  CAS  Google Scholar 

  18. W.F. Greenlee, E.A. Gross, and R.D. Irons, Relationship between benzene toxicity and disposition of 14C-labeled benzene metabolites in the rat, Chem. Biol. Interact. 33:285 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. R. Irons, J. Dent, T. Baker, and D. Rickert, Benzene is metabolized and covalently bound in bone marrow in situ, Chem. Biol. Interact. 30:241 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. L. Andrews, H. Sasame, and J.R. Gillette, 3H-benzene metabolism in rabbit bone marrow, Life Sci. 25(7): 567 (1979).

    Article  PubMed  CAS  Google Scholar 

  21. M. Ingelman-Sundberg and A.L. Hagbjork, On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism.

    Google Scholar 

  22. I. Johansson and M. Ingelman-Sundberg, Hydroxyl radical-mediated, cytochrome P-450-dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver. J. Biol. Chem. 258:7311 (1983).

    PubMed  CAS  Google Scholar 

  23. L.D. Gorsky and M.J. Coon, Evaluation of the role of free hydroxyl radicals in the cytochrome P-450-catalyzed oxidation of benzene and cyclohexanol, Drug Metab. Disp. 13:169 (1985).

    CAS  Google Scholar 

  24. F.U. Saito, J.J. Kocsis, and R. Snyder, Effect of benzene on hepatic drug metabolism and ultra struc ture. Toxicol. Appl. Pharmacol. 26:209 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. G.B. Post and R. Snyder, Effect of enzyme induction on microsomal benzene metabolism, J. Toxicol. Environ. Health. 11:811 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. G.B. Post and R. Snyder, Fluoride stimulation of microsomal benzene metabolism, J. Toxicol. Environ. Health. 11:799 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. P. Baune, J. Flinois, E. LePrevost, and J. Leroux, Influence of ethanol and benzene on cytochrome P-450 fractions in rat liver microsomes, Drug Metab. Dispos. 11:499 (1983).

    Google Scholar 

  28. I. Johansson and M. Inge Lman-Sundberg, Benzene metabolism by ethanol-, acetone-, and benzene-inducible cytochrome P-450 (IIE1) in rat and rabbit liver microsomes, Cancer Res. 48:5387 (1988).

    PubMed  CAS  Google Scholar 

  29. D.R. Koop, C.L. Laethem, and G.G. Schnier, Identification of ethanol-indueible P-450 isozyme 3a (P-450IIE1) as a benzene and phenol hydroxylase, Toxicol. Appl. Pharmacol. 98:278 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. T.A. Chepiga, C.S. Yang, and R. Snyder, Benzene metabolism by two purified, reconstituted rat hepatic mixed function oxidase systems, Toxicologist 10(1):128 (1990).

    Google Scholar 

  31. B.D. Goldstein, G. Witz, J. Javid, M. Amoruso, T. Rossman, and B. Wolder, Muconaldehyde, a potential toxic intermediate of benzene metabolism in “Biological Reactive Intermediates II. Part A”, R. Snyder, D.V. Parke, J.J. Kocsis, D. Jollow, G.G. Gibson, and C.M. Witmer, Eds., Plenum Press, New York, 1982, p. 331.

    Google Scholar 

  32. L. Latriano, B.D. Goldstein, and G. Witz, Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites, Proc. Natl. Acad. Sci. 83:8356 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. T.A. Kirley, B.D. Goldstein, W.M. Maniara, and G. Witz, Metabolism of trans,trans-muconaldehyde, a microsomal hematotoxic metabolite of benzene, by purified yeast aldehyde dehydrogenase and a mouse liver soluble fraction, Toxicol. Appl. Pharmacol. 100:360 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. D. Ross, P. Holzner, and D.R. Petersen, Hepatic metabolism and toxicity of trans-trans muconaldehyde, Toxicologist 10(1):185 (1990).

    Google Scholar 

  35. R. Snyder, E.W. Lee, and J.J. Kocsis, Binding of labeled benzene metabolites to mouse liver and bone marrow, Res. Comm. Chem. Pathol. Pharmacol. 20(1): 191 (1978).

    CAS  Google Scholar 

  36. S. Longacre, J. Kocsis, and R. Snyder, Influence of strain differences in mice on the metabolism and toxicity of benzene, Toxicol. Appl. Pharmacol. 60:398 (1981).

    Article  PubMed  CAS  Google Scholar 

  37. H. Wallin, P. Melin, C. Schelin, and B. Jergil, Evidence that covalent binding of metabolically activated phenol to microsomal proteins is caused by oxidized products of hydroquinone and catechol, Chem. Biol. Interact. 55:335 (1985).

    Article  PubMed  CAS  Google Scholar 

  38. R.C. Smart and V.G. Zannoni, DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene, Mol. Pharmacol. 26:105 (1984).

    PubMed  CAS  Google Scholar 

  39. M.J. Schlosser, R.D. Shurina, and G.F. Kalf, Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthetase, Environ. Health Perspect. 82:229 (1989).

    Article  PubMed  CAS  Google Scholar 

  40. R.C. Smart and V.G. Zannoni, Effect of ascorbate on covalent binding of benzene and phenol metabolites to isolated tissue preparations, Toxicol. Appl. Pharmacol. 77:334 (1985)

    Article  PubMed  CAS  Google Scholar 

  41. B. Wermuth, K. Platts, A. Seidel, and F. Oesch, Carbonyl reductase provides the enzymatic basis of quinone reduction in man, Biochem. Pharmacol. 35:1277 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Snyder, R., Chatterjee, S.P. (1991). Benzene Metabolism. In: Arinç, E., Schenkman, J.B., Hodgson, E. (eds) Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds. NATO ASI Series Advanced Science Institutes Series, vol 202. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7284-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7284-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7286-8

  • Online ISBN: 978-1-4684-7284-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics