Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 192))

  • 45 Accesses

Abstract

The brain of a vertebrate contains in one cubic millimeter about 105 neurones, 109 times more than this in the number of synapses, and about a kilometre in the length of axons and dendrites. The neurones, axons, dendrites and synapses are arranged and connected in a highly specific and ordered manner, though relatively little is known about how this complicated system develops. Developing connections between neurones are established via the neuronal growth cone, which has to navigate through an environment crowded with cellular and extra-cellular signals. The growth cone is a structure exquisitely designed for motility and this environmental exploration; it possesses a dynamic cytoskeleton and surface molecules essential for its recognition of, and recognition by, target cells.

This chapter to be cited as: Allsopp, T., and Bonhoeffer, F., 1990, In vivo and in vitro guidance of axons, in: “Systems Approaches to Developmental Neurobiology,” P. A. Raymond, S. S. Easter, Jr., and G. M. Innocenti, eds., Plenum Press, New York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandtlow, C., Zachleder, T., and Schwab, M.E. 1989, Rapid and permanent inhibition of growth cone motility by oligodendrocytes, Neuron, (submitted).

    Google Scholar 

  • Bonhoeffer, F., and Huff, J., 1985, Position-dependant properties of retinal axons and their growth cones, Nature, 315:409.

    Article  PubMed  CAS  Google Scholar 

  • Cox, T., Mueller, B., Bonhoeffer, F., 1989, Axonal guidance in the chick visual system: Posterior tectal membranes induce collapse of growth cones from the temporal lobe, (submitted).

    Google Scholar 

  • Fawcett, J. W., Rokos, J., and Bakst, I., 1989, Oligodendrocytes repel axons and cause axonal growth cone collapse, J. Cell Sci., 92:93.

    PubMed  Google Scholar 

  • Fujisawa, H., Tani, N., Watanabe, K., and Ibata, Y., 1982, Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connection in the newt, Dev. Biol, 90:43.

    Article  PubMed  CAS  Google Scholar 

  • Gieter, A., 1981, Developing projections between areas of the nervous system, Biol. Cybern.., 42:69.

    Article  Google Scholar 

  • Gierer, A. 1987, Directional cues for growing axons forming the retinotectal projection, Development., 101:479.

    Google Scholar 

  • Gottlieb, D.I., Rock, K. and Glaser, L., 1976, A gradient of adhesive specificity in the developing avian retina, Proc. Natl. Acad. Sci. USA, 73:410.

    Article  PubMed  CAS  Google Scholar 

  • Halfter, W., Claviez, M., and Schwarz, V., 1981, Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites, Nature, 202:67.

    Article  Google Scholar 

  • Lumsden, A.G.S., and Davies, A.M., 1983, Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor, Nature, 306:786.

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi, S. A., Nere, R. L., and Dräger, U. C., 1988, Molecular cloning of the “dorsal eye antigen”: Homology to the high affinity laminin receptor, Soc. Neurosci. Abst., 14:769.

    Google Scholar 

  • Rager, G.H., 1980, Development of the retinotectal projection in the chicken, in: “Advances in Anatomy, Embryology and Cell Biology”, vol. 63, Brodai, A., van Luisbough, J., Ortmann, R. and Tondury, G., eds., Springer-Verlag, Berlin, p.1.

    Google Scholar 

  • Raper, J.A., and Kapfhammer, J.P., 1989, The enrichment of a neuronal growth cone collapsing activity from embryonic brain. Submitted.

    Google Scholar 

  • Sperry, R.W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA, 50:703.

    Article  PubMed  CAS  Google Scholar 

  • Stuermer, C.A.O., 1986, Pathways of regenerated retinotectal axons in goldfish, J. Embryol. Exp. Morph.., 93:1.

    PubMed  CAS  Google Scholar 

  • Tessier-Lavigne, M., Placzek, M., Lumsden, A.G.S., Dodd, J., and Jessell, T.M., 1989, Chemotropic guidance of developing axons in the mammalian central nervous system, Nature, 336:775.

    Article  Google Scholar 

  • Thanos, S., and Deutung, D., 1987, Outgrowth and directional specificity of fibres from embryonic retinal transplants in the chick optic tectum, Dev. Brain Res., 32:161.

    Article  Google Scholar 

  • Thanos, S., Bonhoeffer, F., and Rutishauser, U., 1984, Fibre-fibre interaction and tectal cues influence the development of the chicken retinotectal projection, Proc. Natl. Acad. Sci. USA, 81:1906.

    Article  PubMed  CAS  Google Scholar 

  • Thanos, S. and Bonhoeffer, F., 1986, Course corrections of deflected retinal axons on the tectum of the chick embryo, Neurosci. Lett., 72:31.

    Article  PubMed  CAS  Google Scholar 

  • Trisler, D., and Collins, F., 1987, Corresponding spatial gradients of TOP molecules in the developing retina and optic tectum, Science, 237:1208.

    Article  PubMed  CAS  Google Scholar 

  • Walter, J., Kern-Veits, B., Huf, J., Stolze, B., and Bonhoeffer, F., 1987a, Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro, Development, 101:685

    PubMed  CAS  Google Scholar 

  • Walter, J., Henke-Fahle, S., and Bonhoeffer, F., 1987b, Avoidance of posterior tectal membranes by temporal retinal axons, Development, 101:909.

    PubMed  CAS  Google Scholar 

  • Walter, J., Mueller, B., and Bonhoeffer, F., 1989, Axonal guidance by an avoidance mechanism, J. Physiol. (Paris), in press.

    Google Scholar 

  • Willshaw, D. J., and von der Malsburg, D., 1979, Philos. Trans. R. Soc. Lond. [Biol.], 287:203.

    Article  CAS  Google Scholar 

  • Yoon, M. G., 1973, Retention of the original topographic polarity by the 180 degree rotated tectal reimplant in young adult goldfish. J. Physiol. (Lond), 233:575.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Allsopp, T., Bonhoeffer, F. (1990). In Vivo and In Vitro Guidance of Axons. In: Raymond, P.A., Easter, S.S., Innocenti, G.M. (eds) Systems Approaches to Developmental Neurobiology. NATO ASI Series, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7281-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7281-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7283-7

  • Online ISBN: 978-1-4684-7281-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics