Skip to main content

High Injection Effects in Quantum Well Lasers

  • Chapter
Optical Switching in Low-Dimensional Systems

Part of the book series: NATO ASI Series ((NSSB,volume 194))

  • 117 Accesses

Abstract

While quantum well lasers offer the attractive feature of tuning the wavelength by adjusting the well width, interest in these devices is also stimulated by the reductions in threshold current which are predicted compared with conventional double heterostructure devices.1 Many of the predictions of threshold current (Ith) are based on ideal rectangular density of states functions,2 yet such calculations do not account for the observation that the laser emission occurs at a longer wavelength than that associated with the appropriate sub-band separation.3 Although some calculations have included intra-band scattering,4 or have relaxed the k-selection rules,5 these still fail to reproduce the wavelength behaviour correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review of the physics of quantum well lasers see: P. Blood, Reappraisal of GaAs-AlGaAs quantum well lasers, in Quantum Wells and Superlattices in Optoelectronic Devices and Integrated Optics, A.R. Adams ed, Proc SPIE 861, 34–41 (1987).

    Google Scholar 

  2. N.K. Dutta, “Calculated threshold current of GaAs quantum well lasers” J. Apl. Phys. 53:7211 (1982).

    Article  ADS  Google Scholar 

  3. K. Woodbridge, P. Blood, E.D. Fletcher and P.J. Hulyer, Short wavelength (visible) GaAs quantum well lasers grown by molecular beam epitaxy, Appl. Phys. Letts. 45:16 (1984).

    Article  ADS  Google Scholar 

  4. M. Asada, A. Kameyama, and Y. Suematsu, Gain and intervalence-band absorption in quantum well lasers, IEEE J. Quantum Electron. QE-20:754 (1984).

    Article  ADS  Google Scholar 

  5. P.T. Lansberg, M.S. Abrahams and M. Osinski, Evidence of no k-selection in gain spectra of quantum well AlGaAs laser diodes, IEEE J. Quantum Electron. QE-21:24 (1985).

    Article  ADS  Google Scholar 

  6. P. Blood, S. Colak and A.I. Kucharska, Influence of broadening and high injection effects on GaAs-AlGaAs quantum well lasers, IEEE J. Quantum Electron. QE-24:1593 (1988).

    Article  ADS  Google Scholar 

  7. P. Blood, E.D. Fletcher, P.J. Hulyer and P.M. Smowton, Emission wavelength of AlGaAs-GaAs multiple quantum well lasers, Appl. Phys. Letts. 48:1111 (1986).

    Article  ADS  Google Scholar 

  8. P. Blood, E.D. Fletcher and K. Woodbridge, Dependence of threshold current on the number of wells in AlGaAs-GaAs quantum well lasers, Appl. Phys. Letts. 47:193 (1985).

    Article  ADS  Google Scholar 

  9. S. Tarucha, H. Kobayashi, Y. Horikoshi and H. Okamoto, Carrier induced energy gap shrinkage in current-injection GaAs/AlGaAs MQW heterostructures, Jap. J. Appl. Phys. 23:874 (1984).

    Article  ADS  Google Scholar 

  10. G. Tränkle, H. Leier A Forchel, H. Haug, C. Ell, and G. Weimann, Dimensionality dependence of the band-gap renormalisation in two-and three-dimensional electron-hole plasmas in GaAs, Phys. Rev. Letts. 58:419 (1987).

    Article  ADS  Google Scholar 

  11. E. Zielinski, H. Schweizer, S. Hausser, R. Stuber, M. Pilkuhn and G. Weimann, Systematics of laser operation in GaAs/AlGaAs multi-quantum well lasers, IEEE J. Quantum Electron. QE-23:969 (1987).

    Article  ADS  Google Scholar 

  12. S. Colak, R. Eppenga and M.F.H. Schuurmans, Band mixing effects on quantum well gain, IEEE J. Quantum Eectron. QE-23:960 (1987).

    Article  ADS  Google Scholar 

  13. P. Blood, S. Colak and A.I. Kucharska, Temperature dependence of threshold current in GaAs/AlGaAs quantum well lasers, Appl. Phys. Letts. 52:599 (1988).

    Article  ADS  Google Scholar 

  14. P. Blood, E.D. Fletcher, K. Woodbridge, K.C. Heasman and A.R. Adams, Influence of the barriers on the temperature dependence of threshold current in GaAs/AalGaAs quantum well lasers. To be published.

    Google Scholar 

  15. P.T. Lansberg and D.J. Robbins, Lifetime broadening of a parabolic band edge of a pure semiconductor at various temperatures, Sol. State Electron. 28:137 (1985).

    Article  ADS  Google Scholar 

  16. D.J. Robbins, Lifetime broadening in quantum well lasers, in Novel Optoelectronic Devices, M.J. Adams ed, Proc. SPIE 800:34 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Blood, P. (1989). High Injection Effects in Quantum Well Lasers. In: Haug, H., Bányai, L. (eds) Optical Switching in Low-Dimensional Systems. NATO ASI Series, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7278-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7278-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7280-6

  • Online ISBN: 978-1-4684-7278-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics