Influence of Neonatal Undernutrition on the Development of Rat Cerebral Cortex: A Microchemical Study

  • Norman H. Bass
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 13)


Neurochemists have assembled a large body of data on developing whole brain in many species, including man. Although of great value, these observations do not permit close morphologic correlations because developing brain matures at different times in various regions. Information derived from analyses of whole brain, therefore, is a summation of different events, and the specific changes underlying structural transformation of any one region may be obscured. Therefore, we have confined our observations to the somatosensory area of developing rat cerebrum, combining microchemical techniques with histologic examination to study the differentiation of neuronal cytoplasm, proliferation of axons and dendrites, and the formation of synapses and myelin (1,2).


White Matter Cortical Thickness Postnatal Life Subcortical White Matter Cellular Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bass, N.H., Netsky, M.G., and Young, E. Neurology 19:258 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    Bass, N.H., Netsky, M.G., and Young, E. Neurology 19:405 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Flexner, L.B. Harvey Lect. 47:156 (1952).Google Scholar
  4. 4.
    Hatai, S. Amer. J. Physiol. 12:116 (1904).Google Scholar
  5. 5.
    Donaldson, H.H. J. Comp. Neurol. 21:139 (1911).CrossRefGoogle Scholar
  6. 6.
    Dobbing, J. Biol. Neonat. 9:132 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    Eichenwald, H.F., and Fry, P.C. Science 163:644 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    Winick, M. J. Pediat. 74:667 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    Bass, N.H., Netsky, M.G., and Young, E. Archiv. Neurol. 23:289 (1970).CrossRefGoogle Scholar
  10. 10.
    Bass, N.H., Netsky, M.G., and Young, E. Archiv. Neurol. 23:303 (1970).CrossRefGoogle Scholar
  11. 11.
    Sugita, N. J. Comp. Neurol. 29:177 (1918).CrossRefGoogle Scholar
  12. 12.
    Widdowson, E.M., and McCance, R.A. Proc. Roy. Soc. (Biol.) 152:188 (1960).CrossRefGoogle Scholar
  13. 13.
    Culley, W.J., and Mertz, E.T. Proc. Soc. Exp. Biol. Med. 118:233 (1965).PubMedGoogle Scholar
  14. 14.
    Caley, D.W., and Maxwell, D.S. J. Comp. Neurol. 133:17 (1968).PubMedCrossRefGoogle Scholar
  15. 15.
    Altman, J. Exp. Neurol. 16:263 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    Aghajanian, G.K., and Bloom, F.E. Brain Res. 6:7l6 (1967).CrossRefGoogle Scholar
  17. 17.
    Schade, J.P., and Baxter, C.F. In Inhibition in the Nervous System and GABA, p. 207 (Ed. E. Roberts) (1960).Google Scholar
  18. 18.
    Deza, L., and Eidelberg, E. Exp. Neurol. 17:425 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    Tilney, F. Bull. Neurol. Inst. N.Y. 3:352 (1933).Google Scholar
  20. 20.
    Luse, S.A. J. Biophys. Biochem. Cytol. 2:777 (1956).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Norman H. Bass
    • 1
  1. 1.Departments of Neurology and PharmacologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations