The Response of a Brain Specific Protein at Learning

  • Holger Hydén
  • Paul W. Lange
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 13)


The brain specific acidic protein S100 in the pyramidal nerve cells of the hippocampus was investigated as a possible correlate to learning during transfer of handedness in rats. The amount of S100 increased during training. Intraventricular injection of antiserum against the S100 protein during the course of training prevented the rats from further learning but did not affect motor function in the animals. Antibodies against the S100 protein could be localized after the injection to hippocampal structures by immunofluorescence. By contrast, control animals subjected to the same training and injected with S100 antiserum absorbed with S100 protein or with other antisera against γ-globulins showed no decrease in their ability to learn. The conclusion is that the brain specific protein S100 is linked to the learning process within the training used.


Hippocampal Nerve Cell Nerve Cell Pyramidal Nerve Cell S100 Protein Trained Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, B.V., and McGregor, D. J. biol. Chem. 240:1647 (1965)PubMedGoogle Scholar
  2. 2.
    Hyden, H., and McEwen, B. Proc. nat. Acad. Sci. 55:354 (1966)PubMedCrossRefGoogle Scholar
  3. 3.
    McEwen, B.S., and Hydén, H. J. Neurochem. 13:823 (1966)PubMedCrossRefGoogle Scholar
  4. 4.
    Dannies, P.S., and Levine, L. Biochem. biophys. res. comm. 37:587 (1969)PubMedCrossRefGoogle Scholar
  5. 5.
    Zuckerman, J., Herschman, H., and Levine, L. J. Neurochem. 17:247 (1970)PubMedCrossRefGoogle Scholar
  6. 6.
    Moore, B.W., and Perez, V.J. in Physiological and Biochemical Aspects of Nervous Integration, (Ed. P.D. Carlson, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968, p. 343)Google Scholar
  7. 7.
    Bennett, G.S., and Edelman, G.M. J. biol. Chem. 243:6234 (1968)PubMedGoogle Scholar
  8. 8.
    Bogoch, S., The Biochemistry of Memory (Oxford University Press, London 1968)Google Scholar
  9. 9.
    MacPherson, C.F.C., and Liakopolou, A. Fed. Proc. 24, Part 1, Abstr. 272 (1965)Google Scholar
  10. 10.
    Kosinski, E., and Grabar, P. J. Neurochem. 14:273 (1967)PubMedCrossRefGoogle Scholar
  11. 11.
    Warecka, K., and Bauer, H. J. Neurochem. 14:783 (1967)PubMedCrossRefGoogle Scholar
  12. 12.
    Hydén, H., and Egyhazi, E. Proc. nat. Acad. Sci. 52:1030 (1964)PubMedCrossRefGoogle Scholar
  13. 13.
    Wentworth, K.L. Genet. Psychol. Monogr. 26:55 (1942)Google Scholar
  14. 14.
    Hydén, H. Nature 184:433 (1959)PubMedCrossRefGoogle Scholar
  15. 15.
    Hydén, H., and Lange, P.W. J. Chromat. 35:336 (1968)CrossRefGoogle Scholar
  16. 16.
    Hydén, H., and Lange, P.W. Proc. nat. Acad. Sci. 65:898 (1970)PubMedCrossRefGoogle Scholar
  17. 17.
    Mihailovic, L., and Hydén, H. Brain Res. 16:243 (1969)PubMedCrossRefGoogle Scholar
  18. 18.
    Klatzo, I., Miquel, J., Ferris, P.J., Prokop, J.D., and Smith, D.E. J. Neuropath, exp. Neurol. 23:l8 (1964)Google Scholar
  19. 19.
    Steinwall, O., and Klatzo, I. Acta Neurol. Scand. Vol. 41, Suppl. 13 (1964)Google Scholar
  20. 20.
    Jankovlc, B.D., Rakic, L., Veskov, R., and Horvat, J. Nature 218:270 (1968)CrossRefGoogle Scholar
  21. 21.
    Mihailovic, L., Divac, I., Mitrovic, K., Milosevic, D., and Jankovic, B.D. Exp. Neurol. 24:325 (1969)PubMedCrossRefGoogle Scholar
  22. 22.
    Walsh, R.N., Budtz-Olsen, O.E., Penny, J.E., and Cummins, R.A. J. comp. Neurol. 137:361 (1969)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Holger Hydén
    • 1
  • Paul W. Lange
    • 1
  1. 1.Institute of Neurobiology, Faculty of MedicineUniversity of GöteborgGöteborgSweden

Personalised recommendations