Skip to main content

The Spectrum of Leptons and Quarks

  • Conference paper
Quarks and Leptons

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 61))

  • 178 Accesses

Abstract

The proliferation of quarks and leptons remains one of the least understood features in our present day description of the fundamental structure of matter. The only distinguishing property of the successive generations of fermions seems to be their mass. The purpose of these lectures is to review what is known — or believed — about quark and lepton masses. In the first section we briefly recall the role of the Higgs sector in a spontaneously broken gauge theory of the electroweak force and in section II we review the conventional wisdom on quark masses from current algebra and in a confining theory such as QCD. At this stage all quark (and lepton) masses and mixing angles are unrelated and fundamental parameters in our theory! In section III we then define rather sketchily what a natural symmetry is and under which conditions it allows certain parameters to be calculated; section IV, finally is devoted to a very biased and non exhaustive list of models which attempt to relate ?ermion masses and mixing angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Coleman, Phys. Rev. D15 (1977), 2929.

    ADS  Google Scholar 

  2. C. Callan and S. Coleman, Phys. Rev. D16 (1977), 1762.

    ADS  Google Scholar 

  3. See e.g. S. Weinberg, Phys. Rev. Letters 37 (1976), 657–

    Article  ADS  Google Scholar 

  4. S. Weinberg, Phys. Rev. Letters 19 (1967), 1264.

    Article  ADS  Google Scholar 

  5. S. Weinberg, Phys. Rev. Letters 19 (1967), 1264. A. Salam, Elementary Particle Theory, ed. by N. Svartholm (Stockholm, 1968)

    Google Scholar 

  6. S.L. Glasnow, J. Iliopoulos and L. Maiani, Phys. Rev., D2 (1970), 1285.

    ADS  Google Scholar 

  7. S. Weinberg, Phys. Rev. Letters 29 (1972), 388.

    Article  ADS  Google Scholar 

  8. J.C. Pati and A. Salam, Phys. Rev. D10 (1974), 275.

    ADS  Google Scholar 

  9. R.N. Mohapatra and J.C. Pati, Phys. Rev. D11 (1975), 566 and 2558.

    ADS  Google Scholar 

  10. See e.g. Proceedings of the International V-Conlerence (Bergen, 1979) earlier values can be found in C. Baltay, Proceedings of the XIXth International Conference on High Energy Physics, Tokyo 1978.

    Google Scholar 

  11. S.L. Glashow and S. Weinberg, Phys. Rev. D15 (1977), 1958.

    ADS  Google Scholar 

  12. See e.g. A. de Rujula, H. Georgi and S.L. Glashow, Ann. of Phys. 109 (1977), 258.

    Article  ADS  Google Scholar 

  13. M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49 (1973), 652. For recent reviews on the values of the mixing angles see e.g. H. Harari, Phys. Reports 42C (1978), 235. L. Maiani, Proceedings of the Cargèse Summer School, 1979. V. Barger, W.F. Long and S. Pakvasa, preprint UH 511 - 335 - 79 UW-COO-881–90 (1979). See e.g. M.K. Gaillard, Proceedings of the Cargèse Summer School 1979.

    Article  ADS  Google Scholar 

  14. M. Gell-Mann, R.J. Oakes and B. Renner, Phys. Rev. 175 (1968), 2195

    Article  ADS  Google Scholar 

  15. S. Weinberg, “The problem of Mass”, Festschrift for I.I. Rabi, to be published by N.Y. Academy of Sciences (1978).

    Google Scholar 

  16. H. Georgi and H.D. Politzer, Phys. Rev. D14 (1976), 1829.

    ADS  Google Scholar 

  17. R. F. Dashen, Phys. Rev. 183 (1969), 1245.

    Article  ADS  Google Scholar 

  18. G. Segré and J. Weyers, Phys. Lett. 62B (1976), 91.

    ADS  Google Scholar 

  19. Figure I is reproduced from relerence(12) without any change.

    Google Scholar 

  20. S. Weinberg, Phys. Rev. D7 (1973), 2887.

    ADS  Google Scholar 

  21. K. Symanzik in Coral Gables Conference on Fundamental Interactions at High Energies II edited by A. Perlmutter et al., Gordon and Breach, New York 1970.

    Google Scholar 

  22. See e.g. S. Weinberg, Phys. Rev. Letters 29 (1972), 368.

    ADS  Google Scholar 

  23. A. Duncan and P. Schattner, Phys. Rev. D7 (1973),1861.

    ADS  Google Scholar 

  24. D.Z.Freedman and W.Kummer, Phys. Rev.D7 (1973), 1829.

    ADS  Google Scholar 

  25. S.Y. Pi, Phys. Rev. D7 (1973), 3750.

    ADS  Google Scholar 

  26. J. Liberman, Phys. Rev. D9 (1974), 1749.

    ADS  Google Scholar 

  27. D.Wilkinson, Ph. D. Thesis, University of Pennsylvania (1975).

    Google Scholar 

  28. M. de Crombrugghe, H. Haut and J. Weyers, Phys. Lett. 71B (1977), 400.

    ADS  Google Scholar 

  29. H. Haut, Ph.D. Thesis, University of Louvain (1978).

    Google Scholar 

  30. The only exception which is in itself quite interesting is when m = 0!

    Google Scholar 

  31. See e.g. J. Ellis, Charm and beyond, Lectures given at the Cargèse Summer School 1977.

    Google Scholar 

  32. F. Wilczek and A. Zee, Phys. Rev. Letters 42 (1979), 421.

    Article  ADS  Google Scholar 

  33. For a beautiful review and references to earlier work, see R. Gatto, The Mass Matrix, Université de Genève, preprint UGVADPT 1979/04–199.

    Google Scholar 

  34. This relation was originally derived by R. Gatto, G. Sartori and N. Tonin, Phys. Rev. Lett. 28b (1968), 128.

    ADS  Google Scholar 

  35. H. Fritzsch, Phys. Lett. 70B (1977), 436.

    ADS  Google Scholar 

  36. F. Wilczek and A. Zee, Phys. Letters 70B (1977), U18.

    Google Scholar 

  37. M. de Crombrugghe, Phys. Letters 80B (1979), 365 and Ph.D. Thesis, University of Leuven (1979).

    ADS  Google Scholar 

  38. H. Fritzsch, Phys. Lett. 73B (1978), 317. CERN Preprint TH 2640 (1979).

    ADS  Google Scholar 

  39. The matrix for example is not acceptable since mb ms + md and mt mc + mu.

    Google Scholar 

  40. Some recent applications of permutation symmetry can be found in E. Derman,Phys. Letters 78B (1978) 797.

    Google Scholar 

  41. S. Pakvasa and H. Sugawara, Phys. Letters 78B (1978) 497.

    MathSciNet  Google Scholar 

  42. H. Sato, Nuclear Phys. B152 (1979), 36.

    ADS  Google Scholar 

  43. See also references (30) and (34). Other discrete symmetries have also been considered, See e.g. P. Krawczyk, Warsaw University Preprint 1979.

    Google Scholar 

  44. H. Harari, H. Haut and J. Weyers, Phys. Lett. 78b (1978), 459.

    ADS  Google Scholar 

  45. S. Meljanac and S. Pallua,University of Zagreb, preprint 1979. The discrete symmetry in this case in S3L x S3R. One of the most interesting aspects of this approach is that it led to a numerical value for the Cabibbo angle.

    Google Scholar 

  46. G. Segré, H.A. Weldon and J. Weyers, Phys. Lett. 83B (1979), 351.

    ADS  Google Scholar 

  47. The uniqueness follows from the choice of eq. (75).

    Google Scholar 

  48. In other words we choose an extra discrete symmetry for the leptons which forces their mass matrix to be diagonal, see rel.(31).

    Google Scholar 

  49. This relation was first obtained, I believe, by S. Pakvasa and H. Sugawara, reference (29). See e.g. the talk by S. Pakvasa at 1979, Bergen, to be published.

    Google Scholar 

  50. It is probably fair to estimate the theoretical errors on this number to be of the order of 10–20 %. For other estimates see e.g. ref. (34).

    Google Scholar 

  51. For a simple way out, using soft breakings(10), see e.g. H. Georgi and V. Nanopoulos, Phys. Lett. 82B (1979), 98.

    ADS  Google Scholar 

  52. S. Coleman and E. Weinberg, Phys. Rev. D7 (1973), 1888.

    ADS  Google Scholar 

  53. E. Gildener and S. Weinberg, Phys. Rev. D13 (1976), 3333.

    ADS  Google Scholar 

  54. H. Sato, Nuclear Phys. B148 (1979), 433.

    ADS  Google Scholar 

  55. e.g. S. Barr and A. Zee, Phys. Rev. D18 (1978) 4213 and references quoted therein.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this paper

Cite this paper

Weyers, J. (1980). The Spectrum of Leptons and Quarks. In: Lévy, M., Basdevant, JL., Speiser, D., Weyers, J., Gastmans, R., Jacob, M. (eds) Quarks and Leptons. NATO Advanced Study Institutes Series, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7197-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7197-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7199-1

  • Online ISBN: 978-1-4684-7197-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics