Skip to main content

Compressible Flow of Granular Materials

  • Chapter
Particulate Flows

Abstract

The analysis of compressible flow of granular materials is considered. The necessary thermodynamic background has recently been developed, and this is reviewed from the viewpoint of compressible flow theory. Elementary problems can be solved rather easily following traditional methods of classical gas dynamics. However, even moderately complex problems present subtle unexpected difficulties, which are shown to be related to the inelasticity of particle-particle collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.B., and R. Jackson, A Fluid Mechanical Description of Fluidized Beds, Ind. Eng. Chem. Fund., 6, 527–539 (1967).

    Article  Google Scholar 

  2. Astarita, G., Thermodynamics. An Advanced Textbook for Chemical Engineers, Plenum, New York, 1989.

    Google Scholar 

  3. Astarita, G., and Sarti, G.C., Thermomechanics of Compressible Materials with Entropic Elasticity, in Theoretical Rheology, J.F. Hutton, J.R.A. Pearson and K. Walters Eds., Applied Science Publ., Barking, 1975.

    Google Scholar 

  4. Astarita, G., and R. Ocone, Large-Scale Statistical Thermodynamics and Wave Propagation in Granular Flow, I & EC Research, 33, 2280–2287 (1994).

    Google Scholar 

  5. Atkinson, C.M., and H.K. Kytomaa, Acoustic Wave Speed and Attenuation in Suspensions, Intl. J. Multiphase Flow, 15, 577–592 (1992).

    Article  Google Scholar 

  6. Bagnold, R.A., Experiments on a Gravity-Free Dispersion of Large Solid Particles in a Newtonian Fluid under Shear, Proc. R.y. Soc. London, A225, 49–63 (1954).

    Article  Google Scholar 

  7. Batchelor, G.K., A New Theory for the Instability of a Uniform Fluidized Bed, J. Fluid Mech., 193, 75–110 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. Borderies, N.P. Goldreich, and S.A. Tremaine, A Granular Flow Model for Dense Planetary Rings, Icarus, 63, 406–420 (1985).

    Article  Google Scholar 

  9. Bowen, R.M., Continuum Physics, A.C. Eringen Ed., Academic Press, vol. II, New York, 1971.

    Google Scholar 

  10. Coleman, B.D., and W. Noll, The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity, Arch. Ratl. Mech. Anal., 13, 167–178 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  11. Courant, R., and D. Hilbert, Methods of Mathematical Physics, Interscience, New York, 1952.

    Google Scholar 

  12. Da Vinci, Leonardo, Opere, Ediz. Bibl. Vatican, 1916. The work on sound waves dates back to about 1500.

    Google Scholar 

  13. Ding, J., and D. Gidaspow, A Bubbling Fluidization Model using Kinetic Theory of Granular Flow, AIChEAJ, 36, 523–538 (1990).

    Article  Google Scholar 

  14. Drew, D., Mathematical Modeling of Two-Phase Flow, Ann. Rev. Fluid Mech., 15, 261–291 (1983).

    Article  Google Scholar 

  15. Foscolo, P.U., and L.G. Gibilaro, Fluid Dynamic Stability of Fluidized Suspensions: the Particle Bed Model, Chem. Eng. Sci., 42, 1489–1500 (1987).

    Article  Google Scholar 

  16. Foscolo, P.U., L.G. Gibilaro and S. Rapagna’, Infinitesimal and Finite Voidage Perturbations in the Compressible Particle Phase Description of a Fluidized Bed, AIChE Symp. Series, Fluidization and Fluid-Particle Systems, 1995.

    Google Scholar 

  17. Goldreich, P., and S.A. Tremaine, The Velocity Dispersion in Saturn’s Rings, Icarus, 34, 227–239 (1978).

    Article  Google Scholar 

  18. Haff, P.K., Grain Flow as a Fluid Mechanical Phenomenon, J. Fluid Mech., 134, 401–430 (1983).

    Article  MATH  Google Scholar 

  19. Hugoniot, H., Mémoire sur la Propagation du Mouvement dans les Corps et spécialemnet dan les Gaz Parfaits, J. Ecole Polyt. 58, 1–17 (1888).

    Google Scholar 

  20. Hugoniot, H., Mémoire sur la Propagation du Mouvement dans un Fluide Indefini, J. Math. Pur. Appl., 3, 477–491; 4, 153–167 (1887).

    Google Scholar 

  21. Jackson, R., The Flow of Granular Materials and Aerated Granular Material, J. Rheol., 30, 907–930 (1986).

    Article  Google Scholar 

  22. Jean, R.H. and L.S. Fan, On the Model Equations of Gibilaro and Foscolo with Corrected Buoyancy Forces, Powder Techn., 62, 201–205 (1992).

    Article  Google Scholar 

  23. Jenkins, J.T. and S.B. Savage, A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles, J. Fluid Mech., 130, 187–202 (1983).

    Article  MATH  Google Scholar 

  24. Joseph, D.D., Lundgren, T.S., (with an Appendix by R. Jackson and D.A. Saville), Ensemble Averaged and Mixture Theory Equations for Incompressible Fluid-Particle Suspensions, Int. J. Multiphase Flow, 16, 35–42 (1990).

    Article  MATH  Google Scholar 

  25. Laplace, P.S., “Oeuvres”, (Imprimerie Royale, Paris 1846). The work on the speed of sound dates back to 1816.

    Google Scholar 

  26. Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, 1973.

    Book  MATH  Google Scholar 

  27. Lundgren, T.S., Slow Flow through Stationary Random Beds and Suspensions of Spheres, J. Fluid Mech., 51, 273–299 (1972).

    Article  MATH  Google Scholar 

  28. Maddox, J., Towards Unequal Partition of Energy?,Nature, 374 (6517), 11, 1995.

    Google Scholar 

  29. Maxwell, J.C., On the Dynamical Theory of Gases, Phil. Trans. Roy. Soc. London, 157, 49–98 (1867).

    Article  Google Scholar 

  30. Mc Tigue, D.F., and J.T. Jenkins, Channel Flow of Concentrated Suspensions, in: Advances in Micromechanics of Granular Materials, H.H. Shen, M. Statake, M. Mehrabadi, C.S. Chang, C.S. Campbell Eds., Elsevier, Amsterdam, 1992.

    Google Scholar 

  31. Morse, P.M., and H. Feshbach, Methods of Theoretical Physics, McGraw Hill, New York, 1953.

    MATH  Google Scholar 

  32. Mutsers, S.M.P., and K. Rietema, The Effect of Interparticle Forces on the Expansion of a Homogeneous Gas-Fluidized Bed, Powder Techn., 18, 239–248 (1977).

    Article  Google Scholar 

  33. Nayfeh, A.H., Perturbation Methods, J. Wiley, New York, 1973.

    Google Scholar 

  34. Newton, I., Philosophiae Naturalis Principia Mathematica, Streeter, London 1687.

    Google Scholar 

  35. Ocone, R., and G. Astarita, A Pseudo-Thermodynamic Theory of Granular Flow Rheology, J. Rheol., 37, 727–742 (1993).

    Article  Google Scholar 

  36. Ocone, R., and G. Astarita, On Waves of Particulate Phase Pressure in Granular Materials, J. Rheol., 38, 129–139 (1994).

    Article  Google Scholar 

  37. Ocone, R., and G. Astarita, Compression and Rarefaction Waves in Granular Flow, Powder Techn., 82, 231–237 (1995a).

    Article  Google Scholar 

  38. Ocone, R., and G. Astarita, Energy Partitions, Nature, 375 (6530), 254 (1995b).

    Article  Google Scholar 

  39. Ocone, R., and G. Astarita, Grain Inertia and Fluid Viscosity Dominated Granular Flow Rheology: A Thermodynamics Analysis, Rheol. Acta, 34, 323–328 (1995c).

    Google Scholar 

  40. Ogawa, S., Multitemperature Theory of Granular Materials, in Proc. of the US-Japan Symp. on Cont. Mech. and Statist. Appr. in Mech. of Granular Materials, S.C. Cowin and M. Satake Eds., Gukujatsu Bunken Fukyukai, 1978.

    Google Scholar 

  41. Rhee, K.H., R. Axis, and N.R. Amundson, First Order Partial Differential Equations, Prentice Hall, Englewood Cliffs, 1989.

    MATH  Google Scholar 

  42. Richtmeyer, R.D., and K.W. Morton, Difference Methods for Initial Value Problems, Interscience, New York, 1967

    Google Scholar 

  43. Rosensweig, R.E., Magnetic Stabilization of the State of Uniform Fluidization, Ind. Eng. Chem. Fund., 18, 260–269 (1979).

    Article  Google Scholar 

  44. Savage, S.B., Streaming Motions in a Bed of Vibrationally Fluidized Dry Granular Material, J. Fluid Mech., 194, 457–478 (1988).

    Article  Google Scholar 

  45. Truesdell, C.A., Rational Thermodynamics, 2nd Ed., Springer-Verlag, Berlin, 1984.

    Book  MATH  Google Scholar 

  46. Waterston, J.J., The Physics of Media that are Composed of Free and Perfectly Elastic Molecules in a State of Motion, Phil. Trans. Roy. Soc. London, A183, 1–79 (1893). Published posthumously, 48 years after its submission in 1845.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Astarita, T., Ocone, R., Astarita, G. (1998). Compressible Flow of Granular Materials. In: Drew, D.A., Joseph, D.D., Passman, S.L. (eds) Particulate Flows. The IMA Volumes in Mathematics and its Applications, vol 98. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7109-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7109-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7111-3

  • Online ISBN: 978-1-4684-7109-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics