Skip to main content

Strategies for Solving the Vertical Datum Problem Using Terrestrial and Satellite Geodetic Data

  • Conference paper
Sea Surface Topography and the Geoid

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 104))

Abstract

The classical procedure of establishing precise height networks is based upon geodetic levelling, potentially including gravity information along the levelling lines. Since levelling is a relative operation some vertical datum must be fixed in order to determine “absolute” heights of benchmarks. In most cases the vertical datum of a height network has been defined by assigning zero height to the long-term mean value of local sea level observed at a fundamental tide gauge station. The vertical datum of largely extended height networks has often been fixed by employing several tide gauge stations situated along the coastline. In any case the definition of datum of classical vertical networks is connected with the concept of local mean sea level; the equipotential surface of the earth’s gravity field passing through the fundamental tide gauge mark is the reference surface of heights derived from levelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosch, W. (1985) Concept for modelling the sea surface topography, I.Hotine-Marussi Symposium on Mathematical Geodesy, 787-807,Rome.

    Google Scholar 

  • Chelton, D.B., D.B. Enfield (1986) Ocean Signals in Tide Gauge Records, Journ. Geoph. Res., 91, B9, 9081 - 9099.

    Google Scholar 

  • Christodoulidis, D.Z. (1976) On the realization of a 10 relative oceanic geoid, Dept. of Geod. Sci. Rep. 247, Ohio State Univ., Columbus.

    Google Scholar 

  • Colombo, O.L. (1980a) A world vertical network, Dept. of Geod. Sci. Rep. 196, Ohio State Univ., Columbus.

    Google Scholar 

  • Colombo, O.L. (1980b) Transoceanic Vertical Datum Connections, Proc. Symp. on Problems Related to the Redefinition of the North American Vertical Geodetic Networks, 87-101, Ottawa.

    Google Scholar 

  • Colombo, O.L. (1985) Levelling with the help of space techniques, Proc. 3rd Int. Symp. on the North America Vertical Datum, NOAA, Rockville, MD.

    Google Scholar 

  • Engelis, T. (1987) Radial orbit error reduction and sea surface topography determination using satellite altimetry, Dept. of Geod. Sci. Rep. 377, Ohio State Univ., Columbus.

    Google Scholar 

  • Fischer, I. (1978) Mean sea level and the marine geoid - an analysis of concepts, Marine Geodesy, 1, 37-59. 59.

    Google Scholar 

  • Hajela, D.P. (1983) Accuracy estimates of gravity potential differences between Western Europe and United States through LAGEOS Satellite Laser Ranging Network, Dept. of Geod. Sci. Rep. 345, Ohio State Univ., Columbus.

    Google Scholar 

  • Heck, B. (1989a) A contribution to the scalar free boundary value problem of physical geodesy, manuscripta geodaetica, 14, 87-99. 99.

    Google Scholar 

  • Heck, B. (1989a) A contribution to the scalar free boundary value problem of physical geodesy, manuscripta geodaetica, 14, 87-99. 99.

    Google Scholar 

  • IAG (1980) The Geodesist’s Handbook, Bull. Géod., 54, No. 3.

    Google Scholar 

  • Laskowski, P. (1983) The effect of vertical datum inconsistencies on the determination of gravity related quantities, Dept. of Geod. Sci. Rep. 349, Ohio State Univ., Columbus.

    Google Scholar 

  • Lelgemann, D. (1977) On the definition of the Listing geoid taking into consideration different height systems, Nachrichten Karten-u. Vermessungswesen, Rh. II, 34, 25 - 47.

    Google Scholar 

  • Marsh, J.G. et al. (1989) Dynamic sea surface topography, gravity, and improved orbit accuracies from the direct evaluation of SEASAT altimeter data, NASA Techn. Memo, 100735, GSFC, Greenbelt, Md. Md.

    Google Scholar 

  • Mather, R.S. (1976) Some possibilities for recovering oceanographic information from the SEASAT missions. Unisurv, G24, 103 - 122. 22.

    Google Scholar 

  • Mather, R.S. (1978a) The role of the geoid in four-dimensional geodesy, Marine Geodesy, 1, 217 - 252. 52.

    Article  Google Scholar 

  • Mather, R.S. (1978b) The geoid and continental gravity data banks: the role of satellite altimetry, Unisurv, G29, 1-9.-9.

    Google Scholar 

  • Mather, R.S., Rizos, C., Hirsch, B. and Barlow, B.C. (1976) An Australian gravity data bank for sea surface topography determinations (AUSGAD 76), Unisurv, G25, 54 - 84.

    Google Scholar 

  • Mather, R.C. and Rizos, C. (1978) On vertical datum definition from GEOS-3 altimetry, Proc. 2nd Int. Symp. on Problems Related to the Redefinition of North American Geodetic Networks, Arlington, 589 - 597.

    Google Scholar 

  • Mather, R.S., Rizos, C. and Morrison, T. (1978) On the unification of geodetic levelling datums using satellite altimetry, NASA Techn. Memo 79533, GSFC, Greenbelt, Md.

    Google Scholar 

  • Rapp, R.H. (1980) The Need and Prospects for a World Vertical Datum, Proc. Symp. on Problems Related to the Redefinition of the North American Vertical Geodetic Networks, Ottawa.

    Google Scholar 

  • Rapp, R.H. (1988) The need and prospects for a world vertical datum, Proc. IAG Symposia, IUGG General Assembly, Hamburg, vol. 2, 432 - 445.

    Google Scholar 

  • Rapp, R.H. (1988) The need and prospects for a world vertical datum, Proc. IAG Symposia, IUGG General Assembly, Hamburg, vol. 2, 432 - 445.

    Google Scholar 

  • Rummel, R. (1985) Satellite altimetry as part of a geodetic model, I Hotine-Marussi Symposium on Mathematical Geodesy, 757-787, Rome.

    Google Scholar 

  • Rummel, R. and Teunissen, P. (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem, Bull. Géod., 62, 477 - 498.

    Article  Google Scholar 

  • Sacerdote, F. and Sansò, F. (1986) The scalar boundary value problem of physical geodesy, manuscripta geodaetica, 11, 15 - 28.

    Google Scholar 

  • Schrama, E.J.O. (1989) The role of orbit errors in processing of satellite altimeter data, Netherlands Geodetic Commission, New Series, 33, Delft.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Heck, B., Rummel, R. (1990). Strategies for Solving the Vertical Datum Problem Using Terrestrial and Satellite Geodetic Data. In: Sünkel, H., Baker, T. (eds) Sea Surface Topography and the Geoid. International Association of Geodesy Symposia, vol 104. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7098-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7098-7_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97268-8

  • Online ISBN: 978-1-4684-7098-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics