Skip to main content

Monocrotophos — Interaction with Insects, Mites, and Plants

  • Chapter
  • 59 Accesses

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 139))

Abstract

In industrialized and developing countries, modern agriculture is subject to contradictory trends: in the wealthy countries, society demands yield to be secondary to complete environmental compatibility. In poor countries, by contrast, conservation and optimization of yield is mandatory if sufficient food for the increasing population is to be provided. “Insects are to be controlled by biological means, if possible, exclusively”—this statement would be a modern postulate in the industrialized world. However, the reality in tropical and subtropical agriculture is different. There, plant protection by chemicals is indispensable if volume and continuity of agricultural production are to be safeguarded. For research, this means that new insecticides should be environmentally compatible, safe according to all possible criteria, and superb control agents for all pest species concerned, resistant or not. If these postulates are rigorously followed, the chances for development of a new-age insecticide are practically nil. As a consequence, there has been a steady decline in enterprises with the willingness and capacity to invest in research for new insecticides, and this decline will continue. In this situation, it is mandatory to prolong the useful life of proven insect-control agents by any means. This review deals with monocrotophos, a representative of the enolphosphates, and its biological performance. Over the past two decades, a great amount of work has been done to elucidate the pros and cons of monocrotophos. A cross section of characteristics of monocrotophos is presented to which many workers all over the world have contributed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achillides NZ (1969) Comparison of some new insecticides for the control of Egyptian cotton leafworm on artichokes. Int Pest Cont 11: 12–13.

    CAS  Google Scholar 

  • Ahmad M, McCaffery AR (1988) Resistance to insecticides in a Thailand strain of Heliothis armigera (Huebner) (Lepidoptera: Noctuidae). J Econ Entomol 81: 45–48.

    CAS  Google Scholar 

  • Ascher KRS, Eliyahu M, Ishaaya I, Zur M, Ben-Moshe E (1986) Synergism of pyrethroid-organophosphorus insecticide mixtures in insects and their toxicity against Spodoptera littoralis larvae. Phytoparasitica 14: 101–110.

    Article  CAS  Google Scholar 

  • Auda M, Degheele D (1986) Joint action of chitin synthesis inhibitors with profenofos, monocrotophos or methomyl on a susceptible and resistant strain of Spodoptera littoralis ( Boisd. ). Mededelingen Fac Landbouwwet Rijksuniv Gent 51: 1239–1243.

    Google Scholar 

  • Auda M, El-Saidy MF, Degheele D (1988) Laboratory evaluation of adjuvant insecticide mixtures against a susceptible and monocrotophos-resistant strain of Spodoptera littoralis ( Boisd. ). Mededelingen Fac Landbouwwet Rijksuniv Gent 53: 191–201.

    Google Scholar 

  • Bariola LA, Lindquist DA, Ridgway RL (1967) Greenhouse and field cage tests with systemic insecticides for control of tarnished plant bugs on cotton. J Econ Entomol 60: 257–260.

    CAS  Google Scholar 

  • Buitendag CH (1972) Die effekt van Azodrin op die Sitrus-blade vlooi Trioza erytrea (Del G.). Citrus Grow Subtrop Fruit J 1972 (465): 15–18.

    Google Scholar 

  • Buitendag CH, Bronkhorst GJ (1980) Injection of insecticides into tree trunks — a possible new method for the control of citrus pests? Citrus Subtrop Fruit J 1980 (556): 5–7.

    Google Scholar 

  • Buitendag CH, Bronkhorst GJ (1986) Further aspects of trunk treatment of citrus with insecticides: phytotoxicity, side effects on incidental pests, and development of application apparatus. Citrus Subtrop Fruit J 1986 (623): 7–10.

    Google Scholar 

  • Butani DK, Srivastava RP (1976) Chemical control of mango bud mite, Aceria mangiferae Sayed. Prog Hort 8: 77–81.

    Google Scholar 

  • Bynum ED Jr, Ward CR, Archer TL (1980) Evaluation of 3 selected insecticides for control of the southwestern corn borer Diatraea grandiosella in field corn. Southwest Entomol 5: 128–132.

    Google Scholar 

  • Campanhola C, Plapp FW Jr (1989) Toxicity and synergism of insecticides against susceptible and pyrethroid-resistant neonate larvae and adults of the tobacco budworm (Lepidoptera: Noctuidae). J Econ Entomol 82: 1527–1533.

    CAS  Google Scholar 

  • Cate R Jr, Ridgway RL, Lingren PD (1972) Effect of systemic insecticides applied to cotton on adults of an ichneumonid parasite, Campoletis perdistinctus. J Econ Entomol 65: 484–488.

    CAS  Google Scholar 

  • Chiavegato LG, Mischan MM, Cotas MP (1983) Resistencia do acaro rajado Tetra-nychus urticae (Koch, 1838) (Acari: Tetranychidae) proveniente de diferentes regioes algododeiras aos acaricidas. Cientifica 11: 57–62.

    Google Scholar 

  • Daly JC, Fisk JH, Forrester NW (1988) Selective mortality in field trials between strains of Heliothis armigera (Lepidoptera: Noctuidae) resistant and susceptible to pyrethroids: functional dominance resistance and age class. J Econ Entomol 81: 1000–1007.

    CAS  Google Scholar 

  • DePew LJ (1969) Field evaluation of insecticides to control alfalfa weevil in Kansas 1967–68. J Econ Entomol 62: 1500–1501.

    CAS  Google Scholar 

  • Dittrich V (1969) Structure activity test with 8 monocrotophos analogs. Internal Rept 131 /69.

    Google Scholar 

  • Dittrich V (1972) Phenotypic expression of gene OPL for resistance in twospotted spider mites tested with various organophosphates. J Econ Entomol 65: 1248–1255.

    PubMed  CAS  Google Scholar 

  • Dittrich V, Luetkemeier N, Voss G (1979) Monocrotophos and profenofos: two organophosphates with a different mechanism of action in resistant races of Spodoptera littoralis. J Econ Entomol 72: 380–384.

    CAS  Google Scholar 

  • Dittrich V, Luetkemeier N, Voss G (1980) OP-resistance in Spodoptera littoralis: inheritance, larval and imaginal expression and consequences for control. J Econ Entomol 73: 356–362.

    Google Scholar 

  • Dittrich V (1981) Insecticide resistance—how can industry meet the challenge? Proc 1981 British Crop Prot Conf—Pests Diseases, pp 837–846.

    Google Scholar 

  • Dittrich V, Gisin D, Studer I (1981) Chlordimeform tested for synergism with 2 pyrethroids and monocrotophos in resistant and sensitive strains of the noctuid Spodoptera littoralis (Boisd.) (Lep., Noctuidae ). Z Angew Entomol 92: 499–504.

    Google Scholar 

  • Dittrich V, Ernst GH (1983) The resistance pattern in whiteflies of Sudanese cotton. Mitteilungen Deutsch Ges Allgem Angew Entomol 4: 96–97.

    Google Scholar 

  • Dittrich V, Hassan SO, Ernst GH (1985) Sudanese cotton and the whitefly: a case study of the emergence of a new primary pest. Crop Prot 4: 161–176.

    Article  CAS  Google Scholar 

  • Dittrich V (1987) Resistance and hormoligosis as driving forces behind pest outbreaks. In: Brent KJ, Atkin RK (Eds), Rational Pesticide Use. Cambridge University Press, pp 169–181.

    Google Scholar 

  • Dittrich V, Ernst GH, Ruesch O, Uk S (1990) Resistance mechanisms in sweetpotato whitefly (Homoptera: Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. J Econ Entomol 83: 1665–1670.

    Google Scholar 

  • Ernst GH, Dittrich V (1984) Resistance status of the jassid Empoasca lybica in the Sudan, season 1983/84. Internal Rept 598 /84.

    Google Scholar 

  • Fuchs TW, Harding JA, Dupnik T (1973) Sugarcane borer control on sugarcane in the lower Rio Grande valley of Texas with aerially applied chemicals. J Econ Entomol 66: 802–803.

    CAS  Google Scholar 

  • Gandhale DN, Patil AS, Awate BG, Jadhav DB, Naik LM (1986) Evaluation of insecticides for the control of aphids and delphacids on jowar. Pesticides 20: 17–18.

    CAS  Google Scholar 

  • Ginting CU, Desmier de Chenon R (1987) Application of the systemic insecticide root absorption technique for the long-term protection of coconut palms and other commercial crops. Oleagineux 42: 63–73.

    Google Scholar 

  • Greene GL, Genung WG, Workman RB, Kelsheimer EG (1969) Cabbage looper control in Florida, a cooperative program. J Econ Entomol 62: 798–800.

    CAS  Google Scholar 

  • Guindy MA, Abdel Sattar MM, Keddis ME (1983) The effects of three synergists on the toxicities of certain insecticides to a tolerant field strain of Pectinophora gossypiella ( Saund. ). Int Pest Control 25: 150–152.

    Google Scholar 

  • Guindy MA, El-Refai AA, Saleh WS (1982) The role of esterases in the defence mechanism against intoxication by fenitrothion in susceptible and field tolerant strains of Spodoptera littoralis Boisd. Int Pest Control 24: 100–108.

    Google Scholar 

  • Sayed GN, El-Guindy MA, Madi SM, Dogheim SMA, Moawad GM (1984) Geographical distribution of organophosphorus insecticides resistant strains of the cotton leafworm, Spodoptera littoralis ( Boisd.) in the Nile-Delta. Bull Entomol Soc Egypt 1984: 71–82.

    Google Scholar 

  • Harrison FP (1968) Control of insects infesting sweet corn ears. J Econ Entomol 61: 1163–1164.

    Google Scholar 

  • Henderson CA, Davies FM (1970) Four insecticides tested in the field for control of Diatraea grandiosella. J Econ Entomol 63: 1495–1497.

    CAS  Google Scholar 

  • Horowitz AR, Toscano NC, Youngman RR, Miller TA (1987) Synergistic activity of binary mixtures of insecticides on tobacco budworm (Lepidoptera: Noctuidae) eggs. J Econ Entomol 80: 333–337.

    CAS  Google Scholar 

  • Ishaaya I, Mendelson Z, Ascher KRS, Casida JE (1985) Mixtures of synthetic pyrethroids and organophosphorus compounds for controlling the whitefly, Bemisia tabaci. Phytoparasitica 13: 76–77.

    Google Scholar 

  • Judge FD, McEwen FL (1970) Control of cabbage maggot on radish in New York State. J Econ Entomol 63: 1654–1657.

    CAS  Google Scholar 

  • Kamel AAM, Moustafa TH (1968) Control of Spodoptera littoralis larvae on cotton in the United Arab Republic: summary of 1966 laboratory and field evaluations of various insecticide treatments. J Econ Entomol 61: 901–904.

    CAS  Google Scholar 

  • Konno Y, Shishido T, Tanaka F (1986) Structure-resistance relationship in the organophosphorus resistant rice stemborer Chilo suppressalis. J Pestic Sci 11: 393–399.

    Google Scholar 

  • Koziol FS, Semtner PJ (1989) Extent of resistance to organophosphorus insecticides in field populations of the green peach aphid (Homoptera: Aphididae) infesting flue-cured tobacco in Virginia. J Econ Entomol 77: 1–3.

    Google Scholar 

  • Kumar D, Roy CS, Yazdani SS, Hameed SF, Khan ZR (1985) Efficacy of some insecticides against hopper complex on mango (Mangifera indica L.). Pesticides 19: 42–43.

    CAS  Google Scholar 

  • Lazim MH, Gatehouse AG (1984) Effects of azodrin on adult Heliothis virescens following different routes of uptake. Prot Ecol 7: 249–258.

    CAS  Google Scholar 

  • McCaffery AR, King ABS, Walker AJ, El-Nayir H (1988) Resistance to synthetic pyrethroids in the bollworm, Heliothis armigera from Andhra Pradesh, India. Pestic Sci 27: 65–76.

    Google Scholar 

  • Mistric WJ, Smith FD (1973) Methomyl, monocrotophos, and other insecticides for the control of the tobacco budworm on flue-cured tobacco. Tobac Sci 17: 105–107.

    CAS  Google Scholar 

  • Natarajan K, Sundaram N (1978) Chemical control of jassids and thrips in cotton. Pesticides 12: 38–39.

    CAS  Google Scholar 

  • Negm AA, Hensley SD, Concienne EJ (1969) Insecticidal control of the sugarcane borer in corn. J Econ Entomol 62: 245–246.

    CAS  Google Scholar 

  • Patel NG, Dodia JF, Patel VS (1978) Seed treatment with granular insecticides to paddy. Int Rice Res Newsl 3: 18–19.

    Google Scholar 

  • Perring TM, Archer TL, Bynum ED Jr, Hollingworth KA (1981) Chemical evaluation for control of the Banks grass mite Oligonychus pratensis ( Banks) on field corn. Southwest Entomol 6: 130–135.

    Google Scholar 

  • Pfrimmer TR (1968) Field tests with in-furrow and seed treatments of systemic insecticides on cotton at Stoneville, Mississippi. J Econ Entomol 61: 1607–1612.

    Google Scholar 

  • Prabhaker N, Toscano NC, Coudriet DL (1989) Susceptibility of the immature and adult stages of the sweet potato whitefly (Homoptera: Aleyrodidae) to selected insecticides. J Econ Entomol 82: 983–988.

    CAS  Google Scholar 

  • Reagan TE, Hensley SD, Huffman FR, Fuchs TW (1979) Response to insecticides of the sugarcane borer in Louisiana and Texas. J Econ Entomol 72: 94–96.

    CAS  Google Scholar 

  • Reyes AR, Cruz MA, Genty P (1988) La absorcion radicular en el control de plagas en palma africana. Oleagineux 43: 363–368.

    Google Scholar 

  • Ridgway RL, Reeves BG, Cowan CB, Wilkes LH, Lindquist DA (1966) Stem applications of azodrin for control of the cotton flea hopper. J Econ Entomol 59: 315–318.

    Google Scholar 

  • Ridgway RL, Bariola LA, Jones SL, Lowry WL (1968) Stem treatments to cotton with systemic insecticides against Heliothis zea (Boddie) and H. virescens ( F. ). Bull Entomol Res 57: 553–558.

    Google Scholar 

  • Saini RK, Chopra NP, Verma AN (1989) Development of insecticide resistance and cross-resistance in fenvalerate-and cypermethrin-selected strains of Earias vittella ( Fab. ). Pestic Sci 25: 289–295.

    Google Scholar 

  • Sepsawadi P, Mekongsee B, Knapp FW (1971) Effectiveness of various insecticides against sorghum shoot fly. J Econ Entomol 64: 1509–1511.

    PubMed  CAS  Google Scholar 

  • Smith FF, Ota AK, Boswell AL (1970) Insecticides for the control of the greenhouse whitefly. J Econ Entomol 63: 522–527.

    CAS  Google Scholar 

  • Srivastava AS, Singh B, Mohan K (1986) Control of flea beetle, Psylliodes britinghami Maulik (Coleoptera: Halticinae) on brinjal crop with granular insecticides. Pesticides 20: 20–21.

    CAS  Google Scholar 

  • Sun YP, Johnson ER (1969) Relationship between structure of several azodrin insecticide homologs and their toxicities to houseflies, tested by injection, infusion, topical application, and spray methods with and without synergists. J Econ Entomol 62: 1130–1135.

    CAS  Google Scholar 

  • Sun YP, Johnson ER (1972) Quasi-synergism and penetration of insecticides. J Econ Entomol 65: 349–353.

    PubMed  CAS  Google Scholar 

  • Turnipseed SG (1967) Systemic insecticides for control of soybean insects in South Carolina. J Econ Entomol 60: 1054–1056.

    CAS  Google Scholar 

  • Vines RC, Reagan TE, Sparks TC, Pollet DK (1984) Laboratory selection of Diatraea saccharalis (F.) (Lepidoptera: Pyralidae) for resistance to fenvalerate and monocrotophos. J Econ Entomol 77: 857–863.

    CAS  Google Scholar 

  • Voss G, Dittrich V, (1967) Translocation of insecticidal enolphosphates in plants. Z Angew Entomol 59: 430–442.

    Article  Google Scholar 

  • Wang SC, Ku TY, (1985) Development of insecticide resistance of brown planthopper in Central Taiwan. Chinese J Entomol 4: 131–138.

    Google Scholar 

  • Watve CM, Clower DF, Graves JB, (1977) Resistance to methyl parathion and mono-crotophos in the bandedwing whitefly in Louisiana. J Econ Entomol 70: 263–266.

    CAS  Google Scholar 

  • Webb RE, Argauer RJ, (1974) Uptake of monocrotophos by chrysanthemum cultivars and resulting control of melon aphid. J Econ Entomol 67: 251–252.

    PubMed  CAS  Google Scholar 

  • Whitten CJ, Bull DL (1970) Resistance to organophosphorus insecticides in tobacco budworms. J Econ Entomol 63: 1492–1495.

    CAS  Google Scholar 

  • V. Dittrich, Wilson AGL,(1974) Resistance of Heliothis armigera to insecticides in the Ord irrigation area, northwestern Australia. J Econ Entomol 67: 256–258.

    Google Scholar 

  • Wolfenbarger, DA (1973) Tobacco budworm: cross-resistance to insecticides in resistant strains and in a susceptible strain. J Econ Entomol 66: 292–294.

    PubMed  CAS  Google Scholar 

  • Wood BJ, Liau SS, Knecht JCX, (1974) Trunk injection of systemic insecticides against the bagworm, Metisa plana (Lepidoptera: psychidae) on oilpalm. Oleagineux 29: 499–505.

    CAS  Google Scholar 

  • Young JR, Bowman MC, (1967) Azodrin for corn earworm and fall armyworm control and its persistence in sweet corn. J Econ Entomol 60: 1282–1284.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dittrich, V. (1994). Monocrotophos — Interaction with Insects, Mites, and Plants. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 139. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7071-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7071-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7073-4

  • Online ISBN: 978-1-4684-7071-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics