Skip to main content

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

Currently the term “transgenic organism” is used when referring to an organism which harbors additional genetic information as the result of a genetic engineering step, namely the transfer of purified or cloned DNA. For plants there are two very different approaches for obtaining such DNA transfer. First there is the so called “natural” way of DNA transfer. This method exploits the conjugation-like DNA transfer which can occur when some soil bacteria such as Agrobacterium tumefaciens colonize plants (for recent reviews, see Zambryski, 1988; Gheysen et al.,1989). Many gene vectors have been constructed based on this transfer mechanism and these have allowed the engineering of the first transgenic plants expressing selectable marker genes (Herrera-Estrella et al., 1983). Agrobacterium-mediated gene transfer has also been the method of choice for introducing new economically important traits into plants such as insect resistance (Vaeck et al., 1987), virus resistance (Abel et al., 1986; Nelson et al., 1988) and also for constructing plants with engineered seed proteins which can be the starting material for producing peptides of importance to mammalian physiology (Vandekerckhove et al., 1989). An appreciated advantage of the Agrobacterium system is the fact that the majority of the transformed plants obtained after selection harbour one or two copies of a well defined DNA sequence. However, several important crops such as most leguminous plants and all of the Graminae remain recalcitrant to this type of DNA transfer. Some results have been obtained with such plants by employing the other DNA transfer system which is equivalent to the in vitro DNA uptake methods used with other organisms. To introduce the DNA, polyethyleneglycol (PEG), electroporation or micro injection can be used, but the recipient cell has to be a protoplast capable of regenerating (Lazzeri and Lörz, 1988; Gasser and Fraley, 1989). This severely limits the usefulness of this approach. Nevertheless the method has allowed a breakthrough in the transformation of rice (Shimamoto et al., 1989). Recently promising results have been obtained with a spectacular new mechanical method, the particle gun (Klein et al., 1987; McCabe et al., 1988; Sanford, 1989). This “ballistic” approach can probably be used with any plant species. It should allow the transformation of meristematic cells, hence enhancing the chance of obtaining transgenic plants from those species or cultivars which as yet cannot be taken through a cell culture step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, P. P., Nelson, R. S., De, B., Hoffman, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science, 232: 738.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, J. V., Bannister, W. H., and Rotilio, G., 1987, Aspects of the structure, function and applications of superoxide dismutase, CRC Crit. Rev. Biochem., 22: 111.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamps, C., and Fridovich, I., 1971, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44: 276.

    Article  Google Scholar 

  • Bowler, C., Alliotte, T., De Loose, M., Van Montagu, M., and Inzé, D., 1989a, The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia, EMBO J., 8: 31.

    PubMed  CAS  Google Scholar 

  • Bowler, C., Alliotte, T., Van den Bulcke, M., Bauw, G., Vandekerckhove, J., Van Montagu, M., and Inzé, D., 1989b, plant mitochondrial preprotein is efficiently imported and correctly processed by yeast mitochondria, Proc. Natl. Acad. Sci. USA, 86: 3237.

    Article  CAS  Google Scholar 

  • Clare, D. A., Rabinowitch, H. D., and Fridovich, I., 1984, Superoxide dismutase and chilling injury in Chlorella ellipsoidea, Arch. Biochem. Bioph’s., 231: 158.

    Article  CAS  Google Scholar 

  • Cornai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M., 1985, Expression in plants of a mutant aroA gene from Salmonella thyphimurium confers tolerance to glyphosate, Nature (London), 317: 741.

    Article  Google Scholar 

  • De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, R., Thompson, C., Van Montagu, M., and Leemans, J., 1987, Engineering herbicide resistance in plants by expression of a detoxifying enzyme, EMBO J., 6: 2513.

    PubMed  CAS  Google Scholar 

  • De Greef, W., Delon, R., De Block, M., Leemans, J., and Botterman, J., 1989, Evaluation of herbicide resistance in transgenic crops under field conditions, Bio/technology, 7: 61

    Article  Google Scholar 

  • Fridovich, I., 1978, The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity: superoxide dismutases provide an important defense, Science, 201: 875.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, C. S., and Fraley, R. T., 1989, Genetically engineering plants for crop improvement, Science, 244: 1293.

    Article  PubMed  CAS  Google Scholar 

  • Gheysen, G., Herman, L., Breyne, P., Van Montagu, M., and Depicker, A., 1989, Agrobacterium tumefaciens as a tool for the genetic transformation of plants, in“Genetic transformation and expression”, L. O. Butler, ed., Intercept, London, in press.

    Google Scholar 

  • Haider, M. Z., Knowles, B. H., and Ellar, D. J., 1986, Specificity of Bacillus thuringiensis var. colmeri insecticidal Sendotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases, Eur. J. Biochem., 156: 531.

    CAS  Google Scholar 

  • Halliwell, B., 1984, “Chloroplast metabolism — The structure and function of chloroplasts in green leaf cells”, Clarendon Press, Oxford.

    Google Scholar 

  • Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J., 1983, Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector, Nature (London), 303: 209.

    Article  CAS  Google Scholar 

  • Higuchi, T., 1981, Biosynthesis of lignin, in “Plant Carbohydrates II”, (Encyclopedia of Plant Physiology, New Series Vol. 12B ), W. Tanner, ed., Springer-Verlag, Berlin, pp. 194–224.

    Chapter  Google Scholar 

  • Hofmann, C., Vanderbruggen, H., Höfte, H., Van Rie, J., Jansens, S., and Van Mellaert, H., 1988, Specificity of Bacillus thuringiensis 6-endotoxine is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts, Proc. Natl. Acad. Sci. USA, 85: 7844.

    Article  PubMed  CAS  Google Scholar 

  • Höfte, H., and Whiteley, H. R., 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev., 53: 242.

    PubMed  Google Scholar 

  • Höfte, H., Van Rie, J., Jansens, S., Van Houtven, A., Vanderbruggen, H., and Vaeck, M., 1988, Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis, Appl. Envir. Microbiol., 54: 2010.

    Google Scholar 

  • Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature (London), 327: 70.

    Article  CAS  Google Scholar 

  • Krieg, A., 1986, Bacillus thuringiensis ein mikrobielles Insektizid, Acta Phytomedia, 10: 1.

    Google Scholar 

  • Laties, G. G., 1982, The cyanide-resistant alternative path in higher plant respiration, Ann. Rev. Plant Physiol., 33: 519.

    Article  CAS  Google Scholar 

  • Lazzeri, P., and Lörz, H., 1988, In vitro genetic manipulation of cereals and grasses, Adv. Cell Culture, 6: 291.

    CAS  Google Scholar 

  • Lilley, M., Ruffell, r. N., and Somerville, H. J., 1980, Purification of the insecticidal toxin in crystals of Bacillus thuringiensis, J. Gen. Microbiol., 118: 1.

    PubMed  CAS  Google Scholar 

  • Matters, G. L., and Scandalios, J. G., 1986, Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase (Sod) genes in maize, Biochem. Biophys. Acta, 882: 29.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, D. E., Swain, W. F., Martinell, B. J., and Christou, P., 1988, Stable transformation of soybean (Glycine max) by particle acceleration, Bio/technology, 6: 923.

    Article  Google Scholar 

  • Monk, L. S., Fagerstedt, K. V., and Crawford, R.M.M., 1987, Superoxide dismutase as an anaerobic polypeptide. A key factor in recovery from oxygen deprivation in Iris pseudacorus? Plant Physiol., 85: 1016.

    Article  PubMed  CAS  Google Scholar 

  • Mudd, S. H., Finkelstein, J. D., Irreverre, F., and Laster, L., 1965, Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway, J. Biol. Chem., 240; 4382.

    PubMed  CAS  Google Scholar 

  • Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K., and Thompson, C. J., 1986, Bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster, Mol. Gen. Genet., 205: 42.

    Article  CAS  Google Scholar 

  • Nelson, R. S., McCormick, S. M., Delanney, W., Dubé, P., Layton, J., Anderson, E. J., Kaniewska, M., Proksch, R. K., Horsch, R. B., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1988, Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus, Bio/technology, 6: 403.

    Article  Google Scholar 

  • Peleman, J., Boerjan, w., Engler, G., Seurinck, J., Botterman, J., Alliotte, T., Van Montagu, M., and Inzé, D., 1989, Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase, The Plant Cell, 1: 81.

    Article  PubMed  CAS  Google Scholar 

  • Peleman, J., Saito, K., Cottyn, B., Engler, G., Seurinck, J., Van Montagu, M., and Inzé, D., 1989, Structure and expression of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana,Gene, in press.

    Google Scholar 

  • Rabinowitch, H. D., Sklan, D., and Budowski, P., 1982, Photo-oxidative damage in the ripening tomato fruit: protective role of superoxide dismutase, Physiol. Plant., 54: 369.

    Article  CAS  Google Scholar 

  • Raskin, I., Ehmann, A., Melander, W. R., and Meeuse, B.J.D., 1987, Salicylic acid: a natural induce of heat production in Arum lilies, Science, 237: 1601.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J. C., 1988, The biolistic process, Trends Biotech., 6: 299.

    Article  CAS  Google Scholar 

  • Schatz, G., 1987, Signals guiding proteins to their correct locations in mitochondria, Eur. J. Biochem., 165: 1.

    Google Scholar 

  • Shaaltiel, Y., and Gressel, J., 1987, Kinetic analysis of resistance to paraquat in Conyza. Evidence that paraquat transiently inhibits leaf chloroplast reactions in resistant plants, Plant Physiol., 85: 869.

    Article  PubMed  CAS  Google Scholar 

  • Shah, D. M., Horsch, R. b., Klee, H. J., Kishore, G. M., Winter, J. A., Turner, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., and Fraley, R. T., 1986, Engineering herbicide tolerance in transgenic plants, Science, 233: 478.

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H., 1989, Fertile transgenic rice plants regenerated from transformed protoplasts, Nature (London), 338: 274.

    Article  CAS  Google Scholar 

  • Teeri, T. H., Lehväshlaiho, H., Franck, M., Uotila, J., Heino, P., Palva, E. T., Van Montagu, M., and Herrera-Estrella, L., 1989, Gene fusions to lacZ reveal expression patterns of chimeric genes in transgenic plants, EMBO J., 8: 343.

    PubMed  CAS  Google Scholar 

  • Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J., 1987, Insect resistance in transgenic plants expressing modified Bacillus thuringiensis toxin genes, Nature (London), 328: 33.

    Article  CAS  Google Scholar 

  • Valvekens, D., Van Montagu, M., and Van Lijsebettens, M., 1988, Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants using kanamycin selection, Proc. Natl. Acad. Sci. USA, 85: 5536.

    Article  PubMed  CAS  Google Scholar 

  • Vanderkerckhove, J., Van Damme, J., Van Lijsebettens, J., Botterman, J., De Block, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montagu, M., and Krebbers, E., 1989, Enkephalins produced in transgenic plants using modified 2S seed storage proteins, Bio/technology, 7: 929.

    Article  Google Scholar 

  • Velten, J., Velten, L., Hain, R., and Schell, J., 1984, Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens, EMBO J., 3: 2723.

    PubMed  CAS  Google Scholar 

  • Yang, S. F., and Hoffman, N. E., 1984, Ethylene biosynthesis and its regulation in higher plants, Ann. Rev. Plant Physiol., 35: 155.

    Article  CAS  Google Scholar 

  • Zambryski, P., 1988, Basic processes underlying Agrobacteriummediated DNA transfer to plant cells, Ann. Rev. Genet., 22: 1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Dekeyser, R., Inzé, D., Van Montagu, M. (1990). Transgenic Plants. In: Gustafson, J.P. (eds) Gene Manipulation in Plant Improvement II. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7047-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7047-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7049-9

  • Online ISBN: 978-1-4684-7047-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics