Skip to main content

Stieltjes-Moment-Theory Technique for Calculating Resonance Widths

  • Chapter
Electron-Molecule and Photon-Molecule Collisions

Abstract

Resonant autoionizing states of molecules and autodetaching states of molecular negative ions play important roles in many collision phenomena involving low energy electrons, e.g. dissociative attachment, associative and Penning ionization, dissociative recombination, etc.1,2 Although the formal theory3 of resonant scattering of electrons from molecules has been developed during the past 15 years, there have been very few quantitive studies of resonant phenomena even in diatomic molecules. The main reason for this has been the lack of practical methods for calculating the width of molecular resonances within the Born-Oppenheimer approximation.4 This situation has prevailed for quite some time, even though methods for calculating the resonance parameters of atoms5 and the potential energy curves of molecular resonances6 have been available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Schulz, Rev. Mod. Phys. 45, 423 (1973).

    Article  CAS  Google Scholar 

  2. J. N. Bardsley, Rev. Mod. Phys. to be published. (1979).

    Google Scholar 

  3. J. N. Bardsley and F. Mandl, Rep. Prog. Phys. 31, 472 (1968).

    Article  Google Scholar 

  4. F. Fiquet-Fayard, Vacuum 24, 533 (1974).

    Article  CAS  Google Scholar 

  5. One example is the quasi-projection-operator technique: A. Temkin, A. K. Bhatia and J. N. Bardsley, Phys. Rev. A5, 1663 (1972).

    Google Scholar 

  6. One example is the stabilization method: H. S. Taylor, Adv. Chem. Phys. 18, 91 (1970);

    Google Scholar 

  7. H. S. Taylor and A. U. Hazi, Phys. Rev. A14, 2071 (1976).

    Google Scholar 

  8. A. U. Hazi, J. Phys. B11, L259 (1978).

    CAS  Google Scholar 

  9. H. Feshbach, Ann. Phys (New York) 19, 287 (1962).

    Article  CAS  Google Scholar 

  10. P. W. Langhoff, Int. J. Quant. Chem Symp. 8, 347 (1974).

    Article  CAS  Google Scholar 

  11. C. Bottcher and K. Docken, J. Phys. B7, L5 (1974).

    CAS  Google Scholar 

  12. W. H. Miller, C. A. Slocomb, and M. F. Schaefer, J. Chem. Phys. 56, 1347 (1972)

    Article  CAS  Google Scholar 

  13. A. P. Hickman, A. D. Isaacson, and W. H. Miller, J. Chem. Phys. 66, 1483 (1977).

    Article  CAS  Google Scholar 

  14. B. R. Junker and C. L. Huang, Phys. Rev. A18, 313 (1978).

    Article  CAS  Google Scholar 

  15. W. H. Miller, Chem. Phys. Lett. 4, 627 (1970).

    Article  CAS  Google Scholar 

  16. A. P. Hickman, A. D. Isaacson, and W. H. Miller, Chem. Phys. Lett. 37, 63 (1976).

    Article  CAS  Google Scholar 

  17. E. J. Heller, W. P. Reinhardt and H. A. Yamain, J. Comput. Phys. 13, 536 (1973).

    Article  Google Scholar 

  18. A. U. Hazi and H. S. Taylor, Phys. Rev. A1, 1109 (1970).

    Article  Google Scholar 

  19. P. W. Langhoff and W. P. Reinhardt, Chem. Phys. Lett. 24, 495 (1974).

    Article  CAS  Google Scholar 

  20. A. K. Bhatia, and A. Temkin, Phys. Rev. 182, 15 (1969).

    Article  CAS  Google Scholar 

  21. G. W. F. Drake and A. Dalgarno, Proc. Roy. Soc. A320, 549 (1971).

    Article  Google Scholar 

  22. A. K. Bhatia, P. G. Burke and A. Temkin, Phys. Rev. A8, 21 (1973).

    Article  CAS  Google Scholar 

  23. R. A. Bain, J. N. Bardsley, B. R. Junker and C. V. Sukumar, J. Phys. B 7, 2189 (1974).

    CAS  Google Scholar 

  24. B. D. Buckley and P. G. Burke, J. Phys B10, 725 (1977).

    CAS  Google Scholar 

  25. M. A. Morrison and B. I. Schneider, Phys. Rev. A 16, 1003 (1977).

    Article  CAS  Google Scholar 

  26. D. A. Levin and V. McKoy, Phys. Rev. A to be published.

    Google Scholar 

  27. L. A. Collins, W. D. Robb and M. A. Morrison, J. Phys. B 11 L777 (1978).

    Article  CAS  Google Scholar 

  28. C. Bottcher, J. Phys. B 7, L352 (1974), and unpublished results.

    Google Scholar 

  29. K. Kirby, S. Guberman and A. Dalgarno, J. Chem. Phys. to be published.

    Google Scholar 

  30. G. Raseev, A. Giusti-Suzor, H. Lefebvie-Brion, J. Phys. B 11, 2735 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Hazi, A.U. (1979). Stieltjes-Moment-Theory Technique for Calculating Resonance Widths. In: Rescigno, T., McKoy, V., Schneider, B. (eds) Electron-Molecule and Photon-Molecule Collisions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6988-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6988-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6990-5

  • Online ISBN: 978-1-4684-6988-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics