Skip to main content

Prokaryotic control of transcription: How and why does it differ from eukaryotic control?

  • Chapter
Inducible Gene Expression, Volume 1

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

Escherichia coli and all other prokaryotes have developed elaborate mechanisms to adapt their metabolism to a rapidly changing environment. Some of these mechanisms allow the bacteria to approach or to flee particular chemicals (Adler, 1975; Boyd and Simon, 1982). We will not discuss such mechanisms here. Other mechanisms adapt the transcription rates of genes whose products are needed or not needed in a particular environment. Genes which deal with the catabolism of chemicals which suddenly appear in the environment have to be rapidly turned on. We have to recall that the inner bacterial membrane does not allow the entry of most organic chemicals. There has to be a permease, a specific pump, present which transports the chemical into the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya S (1989): Multipartite genetic control elements: communication by DNA loop. Ann Rev Gent 23: 227–250

    CAS  Google Scholar 

  • Adler J (1975): Chemotaxis in bacteria. Ann Rev Biochem 44: 341–356

    PubMed  CAS  Google Scholar 

  • Adler K, Beyreuther K, Fanning E, Geisler N, Gronenborn B, Klemm A, Müller-Hill B, Pfahl M, Schmitz A (1972): How Lac repressor binds to DNA. Nature 237: 322–327

    PubMed  CAS  Google Scholar 

  • Aiba H, Fujimoto S, Ozak N (1982): Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucl Acids Res 10: 1363–1378

    Google Scholar 

  • Alberti S, Oehler S, v Wilcken-Bergmann B (1993): Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helical bundle. EMBO J 12: 3227–3236

    PubMed  CAS  Google Scholar 

  • Beckwith J, Davies J, Gallant JA, eds. (1983): Gene Function in Procaryotes. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Bell A, Gaston K, Williams R, Chapman K, Kolb A, Buc H, Minchin S, Williams J, Busby S (1990): Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucl Acids Res 18: 7243–7250

    PubMed  CAS  Google Scholar 

  • Berg JN, von Opheusden JHJ, Burgering MJM, Boelens R, Kaptein R (1990): Structure of Arc repressor in solution: Evidence for a family of β-sheet DNA-binding proteins. Nature 346: 586–589

    Google Scholar 

  • Berg OG, Winter RB, von Hippel PH (1981): Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929–6948

    PubMed  CAS  Google Scholar 

  • Blackwood EM, Eisenman RN (1991): Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with myc. Science 251:1211–1217

    PubMed  CAS  Google Scholar 

  • Boyd A, Simon M (1982): Bacterial Chemotaxis. Ann Rev Physiol 44: 501–517

    CAS  Google Scholar 

  • Bracco L, Kotlarz D, Kolb A, Dieckmann S, Buc H (1989): Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 8: 4289–4296

    CAS  Google Scholar 

  • Brennan RG (1992): DNA recognition by the helix-turn-helix motif. Curr Op Str Biol 2: 100–108

    Google Scholar 

  • Brown M, Figge J, Hansen U, Wright C, Jeang K-T, Khoury G, Livingston DM, Roberts TM (1987): Lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell 49: 603–612

    PubMed  CAS  Google Scholar 

  • Chamness GC, Willson CD (1970): An unusual lac repressor mutant, J Mol Biol 53: 561–565

    PubMed  CAS  Google Scholar 

  • Cossart P, Gicquel-Sanzey B (1982): Cloning of the crp gene of Escherichia coli K 12. Nucl Acids Res 10: 1363–1378

    PubMed  CAS  Google Scholar 

  • Cowell IG (1994): Repression versus activation in the control of gene transcription. TIBS 19: 38–42

    PubMed  CAS  Google Scholar 

  • Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991): Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251: 644–649

    Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993): Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262: 1744–1747

    CAS  Google Scholar 

  • Deuschle U, Gentz R, Bujard H (1986): Lac repressor blocks transcribing RNA polymerase and terminates transcription. Proc Natl Acad Sci USA 83: 4134–4137

    PubMed  CAS  Google Scholar 

  • de Crombrugghe B, Busby S, Buc H (1984): Cyclic AMP receptor protein: Role in transcription activation. Science 224: 831–838

    PubMed  Google Scholar 

  • Drlica K, Rouviere-Yaniv J (1987): Histonelike proteins of bacteria. Microb Rev 51: 301–319

    CAS  Google Scholar 

  • Ebright R. (1993): Transcription activation at Class I CAP-dependent promoters. Molecular Microbiology 8 (5): 797–802

    PubMed  CAS  Google Scholar 

  • Ellenberger TE, Brandi CJ, Struhl K, Harrison SC (1992): The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNA complex. Cell 71: 1223–1237

    PubMed  CAS  Google Scholar 

  • Emmer M, de Chrombrugghe B, Ractan I, Perlman R (1970): Cyclic AMP receptor protein of E. coli: Its role in the synthesis of inducible enzymes. Proc Natl Acad Sci USA 66: 480–487

    PubMed  CAS  Google Scholar 

  • Englesberg E, Irr J, Power N, Lee J (1965): Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bact 90: 946–957

    PubMed  CAS  Google Scholar 

  • Faryar K, Gatz C (1992): Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe. Curr Genet 21: 345–349

    PubMed  CAS  Google Scholar 

  • Ferré-d’Amaré A-R, Prendergast GC, Ziff EB, Burley SK (1993): Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38–45

    Google Scholar 

  • Fickert R, Müller-Hill B (1992): How Lac repressor finds lac operator in vitro. J Mol Biol 226: 59–68

    PubMed  CAS  Google Scholar 

  • Figge J, Wright C, Collins CJ, Roberts TM, Livingston DM (1988): Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli Lac repressor in monkey cells. Cell 52: 713–722

    PubMed  CAS  Google Scholar 

  • Flashner Y, Gralla JD (1988): DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU. Cell 54: 713–721

    PubMed  CAS  Google Scholar 

  • Fritz H-J, Bicknäse H, Gleumes B, Heibach C, Rosahl S, Ehring R (1988): Characterization of two mutations in the Escherichia coli galE gene inactivating the second galactose operator and comparative studies of repressor binding. EMBO J 2: 2129–2135

    Google Scholar 

  • Fuerst TR, Fernandez MP, Moss B (1989): Transfer of the inducible lac repressor/operator system from Escherichia coli to a vaccinia virus expression vector. Proc Natl Acad Sci USA 86: 2549–2553

    PubMed  CAS  Google Scholar 

  • Gaston K, Bell A, Kolb A, Buc H (1990): Stringent spacing requirements for transcription activation by CAP. Cell 62: 733–743

    PubMed  CAS  Google Scholar 

  • Gatz C, Frohberg C, Wendenburg R (1992): Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 3: 397–404

    Google Scholar 

  • Gehring WJ, Müller M, Affolter M, Percival-Smith A, Billeter M, Qian YQ, Otting G, Wüthrich K (1990): The structure of the homeodomain and its functional implications. TIG 6: 323–329

    PubMed  CAS  Google Scholar 

  • Gilbert W, Müller-Hill B (1966): Isolation of the Lac repressor. Proc Natl Acad Sci USA 56: 1891–1898

    PubMed  CAS  Google Scholar 

  • Gilbert W, Müller-Hill B (1970): The lactose repressor. In: The Lactose Operon, Beckwith JR, Zipser D, eds. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Gilbert W, Majors J, Maxam A (1976): How proteins recognize DNA sequences. In: Organization and Expression of Chromosomes, Dahlem Konferenzen, Allfrey VG, Bautz EKF, McCarthy BJ, Schimke RT, Tissières A, eds. Berlin: Abakon Verlagsgesellschaft

    Google Scholar 

  • Grunstein M (1990): Nucleosomes: regulators of transcription. TIG 6: 395–400

    PubMed  CAS  Google Scholar 

  • Guarente L, Birmingham-McDonogh O (1992): Conservation and evolution of transcriptional mechanisms in eucaryotes. TIG 6: 395–400

    Google Scholar 

  • Guarente L, Nye JS, Hochschild A, Ptashne M (1982): Mutant phage repressor with a specific defect in its positive control function. Proc Natl Acad Sci USA 79:2236–2239

    PubMed  CAS  Google Scholar 

  • Hammer-Jespersen K, Munch-Petersen A (1975): Multiple regulation of nucleoside catabolizing enzymes: Regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet 137: 327–335

    PubMed  CAS  Google Scholar 

  • Hanes SD, Brent R (1989): DNA specificity of the Bicoid Activator Protein is determined by Homeodomain recognition helix residue 9. Cell 57: 1275–1283

    PubMed  CAS  Google Scholar 

  • Harrison SC, Aggarwal AK (1990): DNA recognition by proteins with the helix-turnhelix motif. Ann Rev Biochem 59: 933–969

    PubMed  CAS  Google Scholar 

  • Hershberger PA, deHaseth PL (1991): RNA polymerase bound to the PR promoter of bacteriophage X inhibits open complex formation at the divergently transcribed PRM promoter. J Mol Biol 222: 479–494

    PubMed  CAS  Google Scholar 

  • Hershberger P, Mita BC, Tripatara A, deHaseth PL (1992): Interference by PR-bound RNA polymerase with PRM function in vitro. J Biol Chem 268: 8943–8948

    Google Scholar 

  • Heyduk T, Lee JC, Ebright YW, Blatter EE, Zhou Y, Ebright RH (1993): CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 264: 548–549

    Google Scholar 

  • Hochschild A, Irwin N, Ptashne M (1983): Repressor structure and the mechanism of positive control. Cell 32: 319–325

    PubMed  CAS  Google Scholar 

  • Hu MC-T, Davidson N (1987): The inducible lac operator-repressor system is functional in mammalian cells. Cell 48: 555–566

    PubMed  CAS  Google Scholar 

  • Igarashi K, Hanamura A, Makino K, Aiba H, Aiba H, Mizuno T, Nataka A, Ishihama A (1991): Functional map of the a subunit of Escherichia coli RNA polymerase: Two models of transcription activation by positive factors. Proc Natl Acad Sci USA 88: 8958–8962

    PubMed  CAS  Google Scholar 

  • Igarashi K, Ishihama, A (1991): Bipartite functional map of the E. coli RNA polymerase subunit: Involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 65: 1015–1022

    PubMed  CAS  Google Scholar 

  • Irani MH, Orosz L, Adhya S (1983): A control element within a structural gene: the gal operon of Escherichia coli. Cell 32: 783–788

    PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961): Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318–356

    PubMed  CAS  Google Scholar 

  • Janson L, Pettersson U (1990): Cooperative interactions between transcription factors Spl and OFT-1. Proc Natl Acad Sci USA 87: 4732–4736

    PubMed  CAS  Google Scholar 

  • Jobe A, Bourgeois S (1972): The Lac repressor-operator interaction VII. A repressor with unique binding properties: the X86 repressor. J Mol Biol 72: 139–152

    PubMed  CAS  Google Scholar 

  • Johnson AD, Meyer BJ, Ptashne M (1979): Interactions between DNA-bound repressors govern regulation by the λ phage repressor. Proc Natl Acad Sci USA 76: 5061–5065

    PubMed  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1989): Eucaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839

    PubMed  CAS  Google Scholar 

  • Jordan SR, Pabo CO (1988): Structure of the Lambda complex at 2.5 Å resolution: Details of the repressor-operator interactions. Science 242: 839–899

    Google Scholar 

  • Kao-Huang Y, Revzin A, Butler A, O’Conner P, Noble D, von Hippel P (1977): Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: Measurement of DNA-bound E. coli lac repressor in vivo. Proc Nat Acad Sci USA 74: 4228–4232

    PubMed  CAS  Google Scholar 

  • Kaptein R, Zuiderweg ERP, Scheek RM, Boelens R, van Gunsteren WF (1985): A protein structure from nuclear magnetic resonance data. Lac repressor headpiece. J Mol Biol 182: 179–182

    PubMed  CAS  Google Scholar 

  • Khoury AM, Nick HS, Lu P (1991): In vivo interaction of Escherichia coli Lac repressor N-terminal fragments with the lac operator. J Mol Biol 219: 623–634

    PubMed  CAS  Google Scholar 

  • Kleinschmidt C, Tovar K, Hillen, W, Porschke D (1987): Dynamics of repressor-operator recognition: The Tn/0-encoded tetracycline resistance control. Biochemistry 27: 1094–1104

    Google Scholar 

  • Knight KL, Bowie JV, Vershon AK, Kelley RD, Sauer RT (1989): The Arc and Mnt repressors. A new class of sequence-specific DNA-binding protein. J Biol Chem 264: 3639–3642

    PubMed  CAS  Google Scholar 

  • Kolb A, Busby S, Garges S, Adhya S (1993): Transcriptional regulation by cAMP and its receptor protein. Ann Rev Biochem 62: 749–795

    PubMed  CAS  Google Scholar 

  • Kolkhof P (1992): Specificities of three tight-binding Lac repressors. Nucl Acids Res 20: 5035–5039

    PubMed  CAS  Google Scholar 

  • Kolkhof P, Teichmann D, Kisters-Woike B, Wilcken-Bergmann Bv, Müller-Hill B (1992): Lac repressor with the helix-turn-helix motif of cro binds to lac operator. EMBO J 11:3031–3038

    PubMed  CAS  Google Scholar 

  • Kristie TM, LeBovitz JH, Sharp PA (1989): The octamer-binding proteins form multi-protein complexes with the HSV a TIF regulatory protein. EMBO J 8:4229–4238

    PubMed  CAS  Google Scholar 

  • Lawrence, PA (1992): The making of a fly. The genetics of animal design. London: Blackwell Scientific Publications

    Google Scholar 

  • Laybourn PJ, Kadonaga JT (1991): Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245

    PubMed  CAS  Google Scholar 

  • Li M, Moyle H, Susskind MM (1994): Target of the transcriptional activation function of phage λcl protein. Science 263: 75–77

    PubMed  CAS  Google Scholar 

  • Lin S-Y, Riggs AD (1975): The general affinity of lac repressor for E. coli DNA: Implications for gene regulation in procaryotes and eucaryotes. Cell 4: 107–111

    PubMed  CAS  Google Scholar 

  • Little JW (1984): Autodigestion of lex A and phage lambda repressors. Proc Natl Acad Sci USA 81: 1357–1359

    Google Scholar 

  • Losick R, Chamberlin M (1976): RNA Polymerase. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Malan TP, McLure WR (1984): Dual promoter control of the Escherichia coli Lactose operon. Cell 39: 173–180

    PubMed  CAS  Google Scholar 

  • Maniatis T, Ptashne M, Backman K, Kleid D, Flashman S, Jeffrey A, Maurer R (1975): Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell 5: 109–113

    PubMed  CAS  Google Scholar 

  • Meyer BJ, Maurer R, Ptashne M (1980): Gene regulation at the right operator (OR) of bacteriophage λ II. O R 1, O R 2, and O R 3: their roles in mediating the effects of repressor and cro. J Mol Biol 139: 163–194

    PubMed  CAS  Google Scholar 

  • McKnight SL, Yamamoto KR (1992): Transcriptional Regulation. Vol. 1 and 2. Cold Spring Harbour: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Miller JH, Reznikoff WS, eds. (1978): The Operon. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Mitchell PJ, Tjian R (1989): Transcriptional regulation in mammalian cells by sequence-specific DNA-binding proteins. Science 245: 371–378

    PubMed  CAS  Google Scholar 

  • Mowbray SL, Cole LB (1992): 1.6 Å X-ray structure of the periplasmic ribose receptor from Escherichia coli. J Mol Biol 225: 155–175

    PubMed  CAS  Google Scholar 

  • Müller (1994): unpublished observation

    Google Scholar 

  • Müller MM, Gerstner T, Schaffner W (1988): Enhancer sequences and regulation of gene transcription. Eur J Biochem 176: 485–495

    PubMed  Google Scholar 

  • Müller-Hill B (1971): Lac Repressor. Angew Chem Int Ed 10: 160–172

    Google Scholar 

  • Müller-Hill B (1983): Sequence homology between Lac and Gal repressors and three sugar-binding periplasmatic proteins. Nature 302: 163–164

    PubMed  Google Scholar 

  • Nichols JC, Vyas NK, Quiocho FA, Matthews KS (1993): Models of Lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data. J Biol Chem 268: 17602–17612

    PubMed  CAS  Google Scholar 

  • Nicklin MJH, Casari G (1991): A single mutation in a truncated Fos protein allows it to interact with the TRE in vitro. Oncogene 6: 173–179

    PubMed  CAS  Google Scholar 

  • Oehler S, Amouyal M, Kolkhof P, Wilcken-Bergmann Bv, Müller-Hill B (1994); Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13; 3348–3355

    PubMed  CAS  Google Scholar 

  • Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990): The three operators of the lac Operon cooperate in repression. EMBO J 9: 973–979

    PubMed  CAS  Google Scholar 

  • Ogata RT, Gilbert W (1978): An amino-terminal fragment of Lac repressor binds specifically to lac operator. Proc Natl Acad Sci USA 75: 5851–5854

    PubMed  CAS  Google Scholar 

  • Otwinowski Z, Schevitz RW, Zhang R-G, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB (1988): Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335: 321–329

    PubMed  CAS  Google Scholar 

  • Pabo CO, Sauer RT (1984): Protein-DNA recognition. Ann Rev Biochem 53: 293–321

    PubMed  CAS  Google Scholar 

  • Pabo CO, Sauer RT, Sturtevant, JM, Ptashne M (1979): The X repressor contains two domains. Proc Natl Acad Sci USA 76: 1608–1612

    PubMed  CAS  Google Scholar 

  • Paulmier N, Yaniv M, von Wilcken-Bergmann B, Müller-Hill B (1987): gal4 transcription activator protein of yeast can function as a repressor in Escherichia coli. EMBO J 6: 3539–3542

    PubMed  CAS  Google Scholar 

  • Pettijohn DE (1988): Histone-like proteins and bacterial chromosome structure. J Biol Chem 263: 12793–12796

    PubMed  CAS  Google Scholar 

  • Pfahl M (1976): Lac repressor-operator interaction. Analysis of the X86 repressor mutant.J Mol Biol 106: 857–869

    PubMed  CAS  Google Scholar 

  • Pirrotta V (1975): Sequence of the OR operator of phage λ Nature 254: 114–117

    PubMed  CAS  Google Scholar 

  • Ptashne M (1992): A genetic Switch. Cambridge: Blackwell Scientific Publications & Cell Press

    Google Scholar 

  • Ptashne M, Backmann K, Humayun MZ, Jeffrey A, Maurer R, Meyer B, Sauer RT (1976): Autoregulation and function of a repressor in bacteriophage lambda. Science 194: 156–161

    PubMed  CAS  Google Scholar 

  • Ransone LJ, Wamley P, Morley KL, Verma A (1990): Domain swapping reveals the modular nature of Fos, Jun, and CREB proteins. Mol Cell Biol 10: 4565–4573

    PubMed  CAS  Google Scholar 

  • Reitzer LJ, Magasanik B (1986): Transcription of gin A in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45: 785–792

    PubMed  CAS  Google Scholar 

  • Renkawitz R (1990): Transcriptional repression in eucaryotes. TIG 6: 192–196

    PubMed  CAS  Google Scholar 

  • ReznikofT WS, Abelson JN (1978): The Lac promoter. In: The Operon, Miller JH, Reznikoff WS, eds. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Reznikoff WS, Winter RB, Hurley CK (1974): The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci USA 79: 2314–2318

    Google Scholar 

  • Rickenberg HV, Cohen GN, Buttin G, Monod J (1956): La galactoside-permease d’Escherichia coli. Ann Inst Pasteur 91: 829–857

    CAS  Google Scholar 

  • Roberts JW, Roberts CW (1975): Proteolytic cleavage of bacteriophage Lambda repressor in induction. Proc Natl Acad Sci USA 72: 147–151

    PubMed  CAS  Google Scholar 

  • Schmitz A, Galas DJ (1979): The interaction of RNA polymerase and lac repressor with the lac control region. Nucl Acids Res 6: 111–137

    PubMed  CAS  Google Scholar 

  • Schüle R, Muller M, Kaltschmidt C, Renkawitz R (1988): Many transcription factors interact synergetically with steroid receptors. Science 242: 1418–1420

    PubMed  Google Scholar 

  • Schultz SC, Shields GC, Steitz TA (1991): Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science 253: 1001–1007

    PubMed  CAS  Google Scholar 

  • Schwartz M (1967): Sur l’existence chez Escherichia coli K12 d’une régulation commune à la biosynthèse des receptors du bacteriophage et au métabolisme du maltose. Ann Inst Pasteur 113: 685–704

    CAS  Google Scholar 

  • Sellitti MA, Pavco PA, Steege DA (1987): Lac repressor blocks in vivo transcription of lac control region DNA. Proc Natl Acad Sci USA 84: 3199–3203

    PubMed  CAS  Google Scholar 

  • Shore D, Langowski J, Baldwin RL (1981): DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 78: 4833–4837

    PubMed  CAS  Google Scholar 

  • Simons (1984): unpublished observation

    Google Scholar 

  • Sogaard-Anderson L, Pedersen H, Holst B, Valentin-Hansen P (1991): A novel function of the cAMP-CRP complex in Escherichia coli: cAMP-CRP repressor an adaptor for the CytR repressor in the deo operon. Mol Microbiol 5: 969–975

    Google Scholar 

  • Somers WS, Phillips SEV (1992): Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by β strands. Nature 359: 387–393

    PubMed  CAS  Google Scholar 

  • Staacke D, Walter B, Kisters-Woike B, Wilcken-Bergmann Bv, Müller-Hill B (1990): How Trp repressor binds to its operator. EMBO J 9: 1963–1967

    PubMed  CAS  Google Scholar 

  • Straney SB, Crothers DM (1987): Lac repressor is a transient gene activating protein. Cell 51: 699–707

    PubMed  CAS  Google Scholar 

  • Struhl K (1989): Molecular mechanism of transcriptional regulation in yeast. Annu Rev Biochem 58: 1051–1077

    PubMed  CAS  Google Scholar 

  • Takeda Y (1979): Specific repression of in vitro transcription by the Cro repressor of bacteriophage λ. J Mol Biol 127: 177–189

    PubMed  CAS  Google Scholar 

  • Teichmann (1991): unpublished observation

    Google Scholar 

  • Vyas NK, Vyas MN, Quiocho FA (1988): Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242: 1290–1295

    PubMed  CAS  Google Scholar 

  • Vyas NK, Vyas MN, Quiocho FA (1991): Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. J Biol Chem. 266: 5226–5237

    PubMed  CAS  Google Scholar 

  • Walker GC (1984): Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48: 60–93

    CAS  Google Scholar 

  • Williams R, Bell A, Sims G, Busby S (1991): The role of two surface exposed loops in transcription activation by the Escherichia coli CRP and FNR proteins. Nucl Acids Res 19: 6705–6712

    PubMed  CAS  Google Scholar 

  • Zhou Y, Busby S, Ebright RH (1993): Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers. Cell 73: 375–379

    PubMed  CAS  Google Scholar 

  • Zubay G, Schwartz D, Beckwith J (1970): Mechanism of activation of catabolite-sensitive genes: A positive control system. Proc Natl Acad Sci USA 66: 104–110

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this chapter

Cite this chapter

Oehler, S., Müller-Hill, B. (1995). Prokaryotic control of transcription: How and why does it differ from eukaryotic control?. In: Baeuerle, P.A. (eds) Inducible Gene Expression, Volume 1. Progress in Gene Expression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6840-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6840-3_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6842-7

  • Online ISBN: 978-1-4684-6840-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics