Skip to main content

Toward Quantitative Protein Structure Prediction

  • Chapter
  • 192 Accesses

Abstract

We review a constrained optimization strategy known as the antlion method for the purpose of protein structure prediction. This method involves the use of neural network predictions of secondary and tertiary structure to systematically deform a protein energy hypersurface to retain only a single minimum near to the native structure. Successful constrained optimization as applied to protein folding relies on (1) an understanding of the chemistry that distinguishes the native minimum from other metastable structures, (2) the incorporation of such information as robust constraints on the energy function to isolate the native structure minimum, and (3) progress toward providing a quantitative representation of the potential or free energy function. We provide a discussion of completed work by us that begins to affect these three problem areas as we move toward our goal of quantitative protein structure prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bash PA, Field MJ, Karplus M (1987): Free energy purturbation method for chemical reactions in the condensed phase: A dynamical approach based on a combined quantum and molecular mechanics force field. J Am Chem Soc 109:8092

    Article  CAS  Google Scholar 

  • Bengio Y, Pouliot Y (1990): Efficient recognition of immunoglobulin domains from amino acid sequences using a neural network. Computer Applications in the Biosciences 6:319–324

    PubMed  CAS  Google Scholar 

  • Binkley JS, Pople JA, Hehre WJ (1980): Self-consistent molecular orbital methods. 21. Small split valence basis sets for first-row elements. J Am Chem Soc 102:939–947

    Article  CAS  Google Scholar 

  • Bohr H, Bohr J, Brunak S, Cotterill RMJ (1990): A novel approach to prediction of the three-dimensional structures of protein backbones by neural networks. FEBS Lett 261:43–46

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorsi R, Palla P, Tomasi J (1984): Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms. An ab initio study. J Am Chem Soc 106:1945–1950

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983): CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  • Bryngelson JD, Wolynes PG (1987): Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84:7524–7528

    Article  PubMed  CAS  Google Scholar 

  • Chan HS, Dill KA (1991): Polymer principles in protein structure and stability. Annu Rev Biophys Chem 20:447–490

    Article  CAS  Google Scholar 

  • Chou PY, Fasman GD (1974): Prediction of protein conformation. Biochem 13:222–275

    Article  CAS  Google Scholar 

  • Churchland PS, Sejnowski TJ (1992): The Computational Brain. Cambridge: MIT Press

    Google Scholar 

  • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983): Efficient diffuse functions augmented basis sets for anion calculations. III. The 3-21G basis set for first row elements, lithium to fluorine. J Comp Chem 4:294–301

    Article  CAS  Google Scholar 

  • Deisenhofer J, Steigemann W (1975): Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 Å resolution. Acta Crystallogr, Sect B 31:238

    Article  Google Scholar 

  • Eisenberg D, Bowie JU, Luthy R, Choe S (1992): Three-dimensional profiles for analysing protein sequence structure relations. Faraday Discussions of the Chem Soc, 25-34

    Google Scholar 

  • Eriksson AE, Baase WA, Zhang X-J, Heinz DW, Blaber M, Baldwin EP, Matthews BW (1992): Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255:178–183

    Article  PubMed  CAS  Google Scholar 

  • Ferran EA, Ferrara P (1992): Clustering proteins into families using artificial neural networks. Computer Applications in the Biosciences 8:39–44

    PubMed  CAS  Google Scholar 

  • Friedrichs MS, Goldstein RA, Wolynes PG (1991): Generalized protein tertiary structure recognition using associative memory hamiltonians. J Mol Biol 222: 1013–1034

    Article  PubMed  CAS  Google Scholar 

  • Frisch MJ, Head-Gordon M, Foresman JB, Trucks GW, Raghavachari K, Schlegel HB, Robb MA, Binkley JS, Gonzalez C, Defreez DJ, Fox DJ, Whiteside RA, Seeger R, Melius CF, Baker J, Kahn LR, Stewart JJP, Fluder EM, Topiol S, Pople JA (1990): Gaussian 90, Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  • Frisch MJ, Pople JA, Binkley JS (1984a): Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–69

    Article  CAS  Google Scholar 

  • Frisch MJ, Pople JA, Del Bene JE (1984b): Molecular orbital study of the dimers (A H n)2 formed from ammonia, water, hydrogen fluoride, phosphine, hydrogen sulfide, and hydrochloric acid. J Phys Chem 89:3664–3669

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Head-Gordon M, Gill PMW, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defreez DJ, Baker J, Stewart JJP, Pople JA (1992): Gaussian 92, Revision A. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  • Gamier J, Osguthorpe DJ, Robson B (1978): Analysis of accuracy and implications of simple methods for predicting secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  Google Scholar 

  • Gibrat JF, Gamier J, Robson B (1987): Further developments of protein secondary structure prediction using information theory. J Mol Biol 198:425–443

    Article  PubMed  CAS  Google Scholar 

  • Godzik A, Skolnick J (1992): Sequence structure matching in globular proteins: application to supersecondary structure and tertiary structure determination. Proc Natl Acad Sci USA 89:12098–12102

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RA, Luthey-Schulten ZA, Wolynes PG (1992): Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci USA 89:9029–9033

    Article  PubMed  CAS  Google Scholar 

  • Hagler AT, Huler E, Lifson S (1974): Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J Am Chem Soc 96:5319–5327

    Article  PubMed  CAS  Google Scholar 

  • Hariharan PC, Pople JA (1974): Effect of d functions on molecular orbital energies for hydrocarbons. Mol Phys 27:209–14

    Article  CAS  Google Scholar 

  • Hayward S, Collins JF (1992): Limits on α-helix prediction with neural network models. Proteins — Structure, Function and Genetics 14:372–381

    Article  CAS  Google Scholar 

  • Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks CL, Pople JA (1989): A theoretical study of alanine dipeptide and analogues. Int J Quant Chem Biol Symp 16:311–322

    CAS  Google Scholar 

  • Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks CL, Pople JA (1991): Theoretical study of blocked glycine and alanine peptide analogues. J Am Chem Soc 113:5989–5997

    Article  CAS  Google Scholar 

  • Head-Gordon T, Stillinger FH (1993a): Toward optimal neural networks for protein structure prediction. Phys Rev E 48. (In press.)

    Google Scholar 

  • Head-Gordon T, Stillinger FH (1993b): Predicting Polypeptide and protein structures from amino acid sequence: Antlion method applied to melittin. Biopolymers 33:293–303

    Article  CAS  Google Scholar 

  • Head-Gordon T, Stillinger FH, Arrecis J (1990): A strategy for finding classes of minima on a hypersurface implications for approaches to the protein folding problem. Proc Natl Acad Sci USA 88:11076–11080

    Article  Google Scholar 

  • Head-Gordon T, Stillinger FH, Wright MH, Gay DM (1992): Poly-L-alanine as a universal reference material for undertanding protein energies and structures. Proc Natl Acad Sci USA 89:11513–11517

    Article  PubMed  CAS  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972): Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–61

    Article  CAS  Google Scholar 

  • Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986): Ab initio Molecular Orbital Theory. New York: Wiley

    Google Scholar 

  • Hendrickson WA, Teeter MM (1981): Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur. Nature 290:107–113

    Article  CAS  Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991): Introduction to the Theory of Neural Computations. Redwood City, CA: Addison-Wesley

    Google Scholar 

  • Hirst JD, Sternberg MJE (1991): Prediction of ATP-binding motifs a comparison of a perceptron type neural network and a consensus sequence method. Prot Eng 4:615–623

    Article  CAS  Google Scholar 

  • Hirst JD, Sternberg MJE (1992): Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks. Biochem 31:7211–7218

    Article  CAS  Google Scholar 

  • Holley LH, Karplus M (1989): Protein secondary structure prediction with a neural network. Proc Natl Acad Sci USA 86:152–156

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988): The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  • Kabsch W, Sander C (1983): Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kartha G, Bello J, Harker D (1967): Tertiary structure of ribonuclease. Nature 213:862–865

    Article  PubMed  CAS  Google Scholar 

  • Kneller DG, Cohen FE, Langridge R (1990): Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol 214:171–182

    Article  PubMed  CAS  Google Scholar 

  • Kolinski A, Skolnick J, Yaris R (1988): Monte Carlo simulations on an equilibrium globular protein folding model. Proc Natl Acad Sci USA 83:7267–7271

    Article  Google Scholar 

  • Lee C, Subbiah S (1991): Prediction of protein side-chain conformation by packing optimization. J Mol Biol 217:373–388

    Article  PubMed  CAS  Google Scholar 

  • Levin JM, Robson B, Gamier J (1986): An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 205:303–308

    Article  PubMed  CAS  Google Scholar 

  • Levitt M (1976): A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107

    Article  PubMed  CAS  Google Scholar 

  • Levitt M (1978): Conformational preferences of amino acids in globular proteins. Biochemistry 17:4277–4285

    Article  PubMed  CAS  Google Scholar 

  • Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253: 694–698

    Article  PubMed  CAS  Google Scholar 

  • Lim VI (1974): Algorithms for prediction of α-helical and β-structural regions in globular proteins. J Mol Biol 88:873–894

    Article  PubMed  CAS  Google Scholar 

  • Madura JD, Jorgensen WL (1986): Ab initio and monte carlo calculations for a nucleophilic addition reaction in the gas phase and in aqueous solution. J Am Chem Soc 108:2517

    Article  CAS  Google Scholar 

  • McGregor MJ, Flores TP, Sternberg MJE (1989): Prediction of β-turns in proteins using neural networks. Prot Eng 2:521–526

    Article  CAS  Google Scholar 

  • Momany FA, Carruthers LM, McGuire RF, Scheraga HA (1974): Intermolecular potentials from crytal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem 78:1595–1620

    Article  CAS  Google Scholar 

  • Momany FA, Klimkowski VJ, Schafer L (1990): On the use of conformationally dependent geometry trends from ab initio dipeptide studies to refine potentials for the empirical force field CHARMM. J Comp Chem 11:654–662

    Article  CAS  Google Scholar 

  • Müller B, Reinhardt J (1990): Neural Networks: An Introduction. Berlin, Heidelberg: Springer-Verlag

    Google Scholar 

  • Muskal SM, Kim SH (1992): Predicting protein secondary structure content a tandem neural network approach. J Mol Biol 225:713–727

    Article  PubMed  CAS  Google Scholar 

  • O’Neill KT, DeGrado WF (1990): A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651

    Article  Google Scholar 

  • Onsager L (1936): Electric moments of molecules in water. J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951): Structure of proteins two hydrogenbonded helical configurations of the Polypeptide chain. Proc Natl Acad Sci USA 37:205–211

    Article  PubMed  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling VT (1986): Numerical Recipes Cambridge: Cambridge University Press

    Google Scholar 

  • Ptitsyn OB, Finkelstein AV (1989): Prediction of protein secondary structure based on physical theory. Protein Eng 2:443–447

    Article  PubMed  CAS  Google Scholar 

  • Qian N, Sejnowski TJ (1988): Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V (1973): Stereochemistry of Polypeptide chain configurations. J Mol Biol 7:95–99

    Article  Google Scholar 

  • Rooman MJ, Wodak SJ (1988): Identification of predictive sequence motifs limited by protein structure database size. Nature 335:45–49

    Article  PubMed  CAS  Google Scholar 

  • Scheraga HA (1992): Some approaches to the multiple-minima problem in the calculation of Polypeptide and protein structures. Int J Quant Chem 42:1529–1536

    Article  CAS  Google Scholar 

  • Shakhnovich E, Farztdinov G, Gutin AM, Karplus M (1991): Protein folding bottlenecks a lattice monte-carlo simulation. Phys Rev Lett 67: 1665

    Article  PubMed  CAS  Google Scholar 

  • Shang H, Head-Gordon T (1994): Stabilization of helices in glycine and alanine dipeptide in a reaction field model of solvent. J Am Chem Soc 116:1528–1532

    Article  CAS  Google Scholar 

  • Stillinger FH, Head-Gordon T, Hirschfeld CL (1993): Toy model for protein folding. Phys Rev E (In press.)

    Google Scholar 

  • Stolorz P, Lapedes A, Xia Y (1992): Predicting protein secondary structure using neural networks and statistical methods. J Mol Biol 225:363–377

    Article  PubMed  CAS  Google Scholar 

  • Tainer JA, Getzoff ED, Beem KM, Richardson JS, and Richardson DC (1982): Determination and analysis of the 2 Å structure of copper, zinc Superoxide dismutase. J Mol Biol 160:181–217

    Article  PubMed  CAS  Google Scholar 

  • Tapia O (1991): On the theory of solvent-effect representation. 1. A generalized self-consistent reaction field theory. J Mol Struct (Theochem) 226:59–72

    Google Scholar 

  • Terwilliger TC, Eisenberg D (1982): The structure of melittin. J Biol Chem 257: 6016–6022

    PubMed  CAS  Google Scholar 

  • Vieth M, Kolinski A (1991): Prediction of protein secondary structure by an enhanced neural network. Acta Biochimica Polonica 38:335–351

    PubMed  CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986): An all atom force field for simulations of proteins and nucleic acids. J Am Chem Soc 106:230–252

    Google Scholar 

  • Wilcox GL, Poliac M, Liebman MN (1990): Neural network analysis of protein tertiary structure. Tetrahedron Comput Methodol 3:191–211

    Article  CAS  Google Scholar 

  • Williams IH (1987): Theoretical modeling of specific solvation effects upon carbonyl addition. J Am Chem Soc 109:6299

    Article  CAS  Google Scholar 

  • Wilmanns M, Eisenberg D (1993): Three-dimensional profiles from residue-pair preferences identification of sequences with beta/alpha-barrel fold. Proc Natl Acad Sci USA 90:1379–83

    Article  PubMed  CAS  Google Scholar 

  • Wong MW, Frisch MJ, Wiberg KB (1991a): Solvent effects. 1. The mediation of electrostatic effects by solvents. J Am Chem Soc 113:4776–4782

    Article  CAS  Google Scholar 

  • Wong MW, Wiberg KB, Frisch MJ (1991b): Solvent effects. 3. Tautomeric equilibria of formamide and 2-pryidone in the gas phase and solution an ab initio scrf study. J Am Chem Soc 114:1645–1652

    Article  Google Scholar 

  • Wong MW, Wiberg KB, Frisch MJ (1992): Solvent effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid. J Am Chem Soc 114:523–529

    Article  CAS  Google Scholar 

  • Zhang X-J, Baase WA, Matthews BW (1991): Toward a simplification of the protein folding problem a stabilizing polyalanine α-helix engineered in T4 lysozyme. Biochem 30:2012–2017

    Article  CAS  Google Scholar 

  • Zwanzig R, Szabo A, Bagchi B (1992): Levinthals paradox. Proc Natl Acad Sci USA 89:20–22

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Head-Gordon, T. (1994). Toward Quantitative Protein Structure Prediction. In: Merz, K.M., Le Grand, S.M. (eds) The Protein Folding Problem and Tertiary Structure Prediction. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6831-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6831-1_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6833-5

  • Online ISBN: 978-1-4684-6831-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics