Skip to main content

Gene Transfer in Mammalian Cells Using Liposomes as Carriers

  • Chapter
Gene Therapeutics

Abstract

After understanding the molecular genetic cause(s) for human diseases, gene therapy is a method of treatment under active research. As the name implies, gene therapy involves treatment of diseases by product(s) of foreign gene which return(s) affected cells or tissues to normal status. The successful application of this approach begins with the development of a suitable carrier for the target specific delivery of genetic material followed by expression of DNA at that site. This carrier should also be able to protect the DNA from surrounding environment, e.g., from plasma for in vivo delivery. Under ideal conditions this expression should be controlled by using inducible or tissue specific promoters. Different kinds of systems are being used to effectively transfer and express the foreign DNA in various types of mammalian cells. These are classified below:

  1. (i)

    agents which deliver DNA by physical means: e.g. microinjection (Capecchi, 1980), electroporation (Paquereau and Cam, 1992), biobalistic or particle bombardment (Yang et al., 1990) and jet injection (Furth et al., 1992).

  2. (ii)

    agents which deliver DNA by chemical means: e.g. calcium phosphate (Wigler et al., 1977), DEAE dextran (Ishikawa and Homey, 1992), polylysine conjugates (Wu and Wu, 1987; Wagner et al., 1990), polybrene-dimethyl sulfoxide (Kawai and Nishizawa, 1984) and liposomes (Feigner et al., 1987; Gao and Huang, 1991)

  3. (iii)

    agents which deliver DNA by biological means: e.g. virus derived vectors (Ferry et al., 1991; Culver et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991): Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Chonn A (1987): Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223: 42–46

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965): Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13: 238–252

    Article  PubMed  CAS  Google Scholar 

  • Behr JP, Demeneix B, Loeffler J-P, Perez-Mutul J (1989): Efficient gene transfer into mammalian priamry endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci USA 86: 6982–6986

    Article  PubMed  CAS  Google Scholar 

  • Belkowski LS, Fan X, Bloom BR (1989): Transfection of murine and human macrophage-like cell lines by cationic liposomes. Focus 11: 35–36

    Google Scholar 

  • Blume G, Gregor C (1990): Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1029: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Bottega R, Epand RM (1992): Inhibition of protein kinase C by cationic amphiphiles. Biochemistry 31: 9025–9030

    Article  PubMed  CAS  Google Scholar 

  • Brigham KL, Meyrick B, Christian B, Magnuson M, King G, Berry L (1989): In vivo transfection of murine lungs with a functioning prokaryotic gene using a liposomes vehicle. Am J Med Sci 298: 278–281

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1980): High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–485

    Article  PubMed  CAS  Google Scholar 

  • Collins D, Litzinger DC, Huang L (1990): Structural and functional comparisons of pH-sensitive liposomes composed of phosphatidylethanolamine and three different diacylsuccinylglycerols. Biochim BiophysActa 1025: 234–242

    Article  CAS  Google Scholar 

  • Collins D, Maxfield F, Huang L (1989): Immunoliposomes with different acid sensitives as probes for the cellular endocytic pathway. Biochim BiophysActa 987: 47–55

    Article  CAS  Google Scholar 

  • Collins D, Huang L (1987): Cytotoxicity of diphtheria toxin A fragment to toxin- resisted murine cells delivery by pH-sensitive immunoliposomes. Cancer Res 47: 735–739

    PubMed  CAS  Google Scholar 

  • Connor J, Huang L (1986): pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res 46: 3431–3435

    Google Scholar 

  • Connor J, Huang L (1985): Efficient cytoplasmic delivery of a fluorescent dye by pH-sensitive immunoliposomes. J Cell Biol 101: 582–589

    Article  PubMed  CAS  Google Scholar 

  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992): In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552

    Article  PubMed  CAS  Google Scholar 

  • Debs RJ, Freedman LP, Edmunds S, Gaensler KL, Duzgunes N, Yamamoto KR (1990): Regulation of gene expression in vivo by liposome-mediated delivery of a purified transition factor. J Biol Chem 265: 10189–10192

    PubMed  CAS  Google Scholar 

  • Dorman L, Yong H (1989): Cationic liposomes-mediated transfection of suspension cultures. Focus 11: 37

    Google Scholar 

  • Ellens H, Morselt H, Scherphof G (1981): In vivo fate of large unilamellar sphingomylein-cholesterol liposomes after intraperitoneal and intravenous injection into rats. Biochim Biophys Acta 674: 10–18

    Article  PubMed  CAS  Google Scholar 

  • Farhood H, Bottega R, Epand RM, Huang L (1992): Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim Biophys Acta 1111: 239–246

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Gadek YR, Holm M, Roman R, Chan HW, Wenz M, Northop JP, Ringold GM, Danielson M (1987): Lipofection: A highly efficient, lipid-me- diated DNA-transfection procedure. Proc Natl Acad Sci USA 84: 7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Holm M (1989): Cationic liposome-mediated transfection. Focus 11: 21–25

    Google Scholar 

  • Feigner PL, Ringold GM (1989): Cationic liposome-mediated transfection. Nature 337: 387–388

    Article  Google Scholar 

  • Ferry N, Duplessis O, Hopussin D, Danos O, Heard J-M (1991): Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci USA 88: 8377–8381

    Article  PubMed  CAS  Google Scholar 

  • Fielding RM, Abra RM (1992): Factors affecting the release rate of terbutaline from liposome formulations after intratracheal instillation in the guinea pig. Pharm Res 9: 220–223

    Article  PubMed  CAS  Google Scholar 

  • Friend DS, Debs RJ, Duzunes N (1990): Interactions between DOTMA liposomes, CV-1 and U937 cells and their isolated nuclei. 30th annual meeting of the American Society for Cell Biology, San Diego. J Cell Biol 111: 663

    Article  Google Scholar 

  • Furth PA, Shamay A, Wall RJ, Hennighausen L (1992): Gene transfer into somatic tissues by jet injection. Anal Biochem 205: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988): Liposome formulation with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85: 6949–6953

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Huang L (1991): A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 179: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Gilboa E, Eglitis MA, Kantoff PW, French Anderson W (1986): Transfer and expression of cloned genes using retroviral vectors. Biotechniques 4: 504–512

    CAS  Google Scholar 

  • Hannun YA, Bell RM (1989): Functions of sphingolipids and sphingolipid break-down products in cellular regulation. Science 243: 500–507

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Loomis CR, Merrill Jr AH, Bell RM (1986): Sphingosine inhibition of protein kinase C activity and phorbol diburate binding in vitro and in human platelets. J Biol Chem 261: 12604–12609

    PubMed  CAS  Google Scholar 

  • Heath TD (1987): Covalent attachment of proteins to liposomes. Meth Enzymol 149: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Holmberg E, Maruyama K, Litzinger DC, Wright S, Davis M, Kabalka GW, Kennel SJ, Huang L (1989): Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 165: 1272–1278

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Connor J, Wang C-Y (1987): pH-sensitive immunoliposomes. Meth Enzymol 149: 88–99

    Google Scholar 

  • Huang L, Huang A, Kennel S (1984): Coupling of antibodies with liposomes. In: Liposome Technology (Gregoriadis G; ed.), volume 3, CRC press, Boca Raton, pp. 51–62

    Google Scholar 

  • Hug P, Sleight RG (1991): Liposomes for the transformation of eukaryotic cells. Biochim Biophys Acta 1097: 1–17

    PubMed  CAS  Google Scholar 

  • Hwang KJ (1987): Liposome pharmacokinetics. In: Liposomes: From biophysics to therapeutics, ( Ostro MJ ed.), Marcel Dekker, New York, pp. 109–156

    Google Scholar 

  • Ishikawa Y, Homey CJ (1992): High efficiency gene transfer into mammalian cells by a double trasnsfection protocol. Nuc Acids Res 20: 4367

    Article  CAS  Google Scholar 

  • Kawai S, Nishizawa M (1984): New procedure for DNA transfection with polycation and dimethyl sulphoxide. Mol Cell Biol 4: 1172–1174

    PubMed  CAS  Google Scholar 

  • Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L (1991): Acitivity of amphipathic poly (ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposomes binding to target. Biochim Biophys Acta 1062: 142–148

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990): Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Legendre J-Y, Szoka FC (1992): Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: Comparison with cationic liposomes. Pharm Res 9: 1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Leventis R, Silvius JR (1990): Interaction of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1023: 124–132

    Article  PubMed  CAS  Google Scholar 

  • Litzinger D, Huang L (1992a): Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim BiophysActa 1113: 201–227

    CAS  Google Scholar 

  • Litzinger D, Huang L (1992b): Amphipathic poly(ethylene glycol) 5000-stabilized dioleoylphosphatidylethanolamine liposomes accumulate in spleen. Biochim Biophys Acta 1127: 249–254

    PubMed  CAS  Google Scholar 

  • Litzinger D, Huang L (1992c): Biodistribution and immunotargetability of ganglioside-stabilized dioleoylphosphatidylethanolamine liposomes. Biochim BiophysActa 1104: 179–187

    Article  CAS  Google Scholar 

  • Liu D, Mori A, Huang L (1992): Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM containing liposomes. Biochim Biophys Acta 1104: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Mori A, Huang L (1991): Large liposomes containing ganglioside GM accumulate effectively in spleen. Biochim Biophys Acta 1066: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Huang L (1990): pH-sensitive, plasma-stable liposomes with relatively prolonged residence in circulation. Biochim Biophys Acta 1022: 348–354

    Google Scholar 

  • Malone RW, Feigner PL, Verma IM (1989): Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 86: 6077–6081

    Article  PubMed  CAS  Google Scholar 

  • Martin FG, MacDonald RC (1976): Lipid vesicle-cell interactions. III. Introduction of a new antigenic determinant into erythrocyte membranes. J Cell Biol 70: 515–526

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Kennel SJ, Huang L (1990): Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 87: 5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Maurer RA (1989): Cation liposome-mediated transfection of primary cultures of rat pituitary cells. Focus 11: 25–27

    Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990): Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242

    PubMed  CAS  Google Scholar 

  • Mori A, Klibanov AL, Torchilin VP, Huang L (1991): Influence of the steric barrier activity of amphipathic poly (ethylene glycol) and ganglioside GM on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 284: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ, Chang A, Nabel EG, Plautz G, Fox BA, Huang L, Shu S (1992a): Clinical protocol: Immunotherapy of malignancy by in vivo gene transfer into tumors. Human Gene Therapy 3: 399–410

    Article  Google Scholar 

  • Nabel EG, Gordon D, Yang Z-Y, Xu L, San H, Plautz GE, Wu B-Y, Gao X, Huang L, Nabel GJ (1992b): Gene transfer in vivo with DNA-liposome complexes: Lack of autoimmunity and gonadal localization. Human Gene Therapy 3: 649–656

    Article  PubMed  CAS  Google Scholar 

  • Nabel EG, Plautz G, Nabel GJ (1990): Site-specific gene expression in vivo by direct gene transfer into arterial wall. Science 249: 1285–1288

    Article  PubMed  CAS  Google Scholar 

  • Paquereau L, Cam AL (1992): Electroporation-mediated gene transfer into hepatocytes: preservation of a growth hormone response. Anal Biochem 204: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Parker RJ, Sieber SM, Weinstein JN (1981): Effect of liposome encapsulation of a fluorescent dye on its uptake by the lymphatics of the rat. Pharmacol 23: 128–136

    Article  CAS  Google Scholar 

  • Pinnaduwage P, Schmitt L, Huang L (1989): Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochim BiophysActa 985: 33–37

    Article  CAS  Google Scholar 

  • Poste G, Kirsh R, Koestler T (1984): The challenge of liposome targeting in vivo. In: Liposome Technology (Gregoriadis G; ed.), volume 3, CRC press, Boca Raton, pp. 1–28

    Google Scholar 

  • Reston JT, Gould-Fogerite S, Mannino RJ (1991): Potentiation of DNA mediated gene transfer in NIH3T3 cells by activators of protein kinase C. Biochim BiophysActa 1088: 270–276

    CAS  Google Scholar 

  • Rose JK, Buonocore L, Whitt MA (1991): A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques 10: 520–525

    PubMed  CAS  Google Scholar 

  • Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Pakko PK, Gilardi P, Straford-Perricaudet LD, Perricaudet M, Jallat S, Pavirani A, Lecocq JP, Crystal RG (1991): Adenovirus-mediated transfer of a recombinant alpha 1-antitiypsin gene to the lung epithelium in vivo. Science 252: 431–434

    Article  PubMed  CAS  Google Scholar 

  • Satbel S, Parker PJ (1991): Protein Kinase C. Pharmac Ther 51: 71–95

    Article  Google Scholar 

  • Senior JR (1987): Fate and behavior of liposomes in vivo: a review of controlling factors. CRC Cri Rev Therp Drug Carr Sys 3: 123–193

    CAS  Google Scholar 

  • Seth P, Fitzgerald DJP, Willingham MC, Pastan I (1984): Role of a low-pH environment in adenovirus enhancement of the toxicity of a Pseudomonas exotoxin-epidermal growth factor conjugate. J Virol 51: 650–655

    PubMed  CAS  Google Scholar 

  • Stavridis JC, Deliconstantinos G, Psallidopoulos MC, Armenakas NA, Hadjiminas DJ, Hadjiminas J (1986): Construction of transferrin-coated liposomes for in vivo transport of exogenous DNA to bone marrow erythroblasts in rabbits. Exp Cell Res 164: 568–572

    Article  PubMed  CAS  Google Scholar 

  • Stewart MJ, Plautz GE, Buono LD, Yang ZY, Xu L, Gao X, Huang L, Nabel EG, Nabel GJ (1992): Gene transfer in vivo with DNA-liposome complexes: safety and acute toxicity in mice. Human Gene Therapy 3: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Straubinger RM, Duzgunes N, Papahadjopoulos D (1985): pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 179: 148–154

    Google Scholar 

  • Stribling R, Brunette E, Liggitt D, Gaensler K, Debs R (1992): Aerosol gene delivery in vivo. Proc Natl Acad Sci USA 89: 11277–11281

    Article  PubMed  CAS  Google Scholar 

  • Stripp BR, Whitsett JA, Lattier DL (1990): Strategies for analysis of gene expression: pulmonary surfactant proteins. American J Physol 259: 185–197

    Google Scholar 

  • Temin HM (1990): Safety considerations in somatic gene therapy of human disease with retrovirus vectors. Human Gene Therapy 1: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Trubetskoy VS, Torchilin VP, Kennel S, Huang L (1992a): Use of N-terminal modified poly-L-lysine-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjugate Chem 3: 323–327

    Article  CAS  Google Scholar 

  • Trubetskoy VS, Torchilin VP, Kennel S, Huang L (1992b): Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N- terminal modified poly-L-lysine-antibody conjugate in mouse lung endothe- lial cells. Biochim Biophys Acta 1131: 311–313

    PubMed  CAS  Google Scholar 

  • Tuner A, Kirby C, Seniori, Gregoriadis G (1983): Fate of cholesterol-rich liposomes after subcutaneous injection into rats. Biochim Biophys Acta 760: 119–125

    Article  Google Scholar 

  • Verma IM (1985): Retroviral vectors for gene transfer. In: Microbiology ( Leive L et al., eds.) American Society of Microbiology, Washington, DC, p. 229

    Google Scholar 

  • Wagner E, Zatloukal K, Cotten M, Kirlappos H, Mechtrler K, Cunei DT, Birnstiel ML (1992): Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA 89: 6099–6103

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Zenk M, Cotten M, Beug H, Birnsteil ML (1990): Transferrin-polycation conjugates as carriers for DNA uptake into the cells. Proc Natl Acad Sci USA 87: 3410–3414

    Article  PubMed  CAS  Google Scholar 

  • Wang C-Y, Huang L (1989): Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 28: 9508–9514

    Article  PubMed  CAS  Google Scholar 

  • Wang C-Y, Huang L (1987): pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci USA 84: 7851–7855

    Google Scholar 

  • Wang C-Y, Hughes K, Huang L (1986): Improved cytoplasmic delivery to plant protoplasts via pH-sensitive liposomes. Plant Physiology 82: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Welsh N, Oberg C, Hellerstrom C, Welsh M (1990): Liposome mediated in vivo transfection of pancreatic islet cells. Biomed Biochim Acta 49: 1157–1164

    PubMed  CAS  Google Scholar 

  • Wigler M, Silverstein S, Lee L-S, Pellicer A, Cheng Y-C, Axel R (1977): Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Wu GY, Wu CH (1988): Receptor-mediated gene delivery and expression in vivo. J Biol Chem 263: 14621–14624

    PubMed  CAS  Google Scholar 

  • Wu GY, Wu CH (1987): Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262: 4429–4432

    PubMed  CAS  Google Scholar 

  • Yang N-S, Burkholder I, Roberts B, Martinell B, McCabe D (1990): Proc Natl Acad Sci USA 87: 9568–9572

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Rosenfeld M, Nakamura H, Scherer MM, Pavirani A, Lecocq I-P, Crystal RG (1992): Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intracheal plasmid-mediated gene transfer. Nuc Acid Res 20: 3233–3240

    Article  CAS  Google Scholar 

  • Zhou X (1992): Liposome mediated gene transfer in mammalian cells. PhD thesis, University of Tennessee, Knoxville, USA

    Google Scholar 

  • Zhou X, Huang L (1992): Targeted delivery of DNA by liposomes and polymers. J Controlled Release 19: 269–274

    Article  CAS  Google Scholar 

  • Zhou X, Klibanov AL, Huang L (1992): Improved encapsulation of DNA in pH-sensitive liposomes for transfection. J Liposome Res 2: 125–139

    Article  Google Scholar 

  • Zhou X, Klibanov AL, Huang L (1991): Lipophilic poly lysine mediates efficient DNA transfection in mammalian cells. Biochim Biophys Acta 1065: 8–14

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Singhal, A., Huang, L. (1994). Gene Transfer in Mammalian Cells Using Liposomes as Carriers. In: Wolff, J.A. (eds) Gene Therapeutics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6822-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6822-9_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6824-3

  • Online ISBN: 978-1-4684-6822-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics