Skip to main content

Receptor-Mediated Targeted Gene Delivery Using Asialoglycoprotein-Polylysine Conjugates

  • Chapter
Gene Therapeutics

Abstract

Delivery of exogenous DNA into cells has been in the forefront of genetic research, both in basic and clinical sciences. Many techniques have been developed to introduce foreign genes into mammalian cells in vitro (Gopal, 1985; Harland and Weintraub, 1985; Potter et al, 1984; Williams et al., 1984; Nicolau and Sene, 1982; Zhou et al., 1991; Graham and Van der Eb, 1973). For example, one of the oldest and most popular methods involves a co-precipitation of DNA with calcium phosphate. These insoluble particles are internalized within the host cells (Loyter et al., 1982). A portion of the DNA containing a gene of interest can be expressed in vitro. Indeed, calcium phosphate precipitates have also been used successfully in vivo by direct injection into organs resulting in transfection of cells in animals and subsequent expression (Dubensky et al., 1984a; Benvenisty and Reshef, 1986a). For example, Benvenisty and Reshef detected expression of chloramphenicol acetyltransferase (CAT), in mainly liver and spleen, after intraperitoneal injection of calcium phosphate precipitated plasmids which contained CAT marker gene (Benvenisty and Reshef, 1986b). Similarly, Dubensky and associates were able to demonstrate viral replication and acute infection after polyoma viral DNA was directly introduced into the liver or spleens of mice (Dubensky et al., 1984b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashwell G, Morell A (1974): The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 41: 99–128

    PubMed  CAS  Google Scholar 

  • Benvenisty N, Reshef L (1986): Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci USA 83: 9551–9555

    Article  PubMed  CAS  Google Scholar 

  • Dubensky T, Campbell B, Villarreal L (1984): Direct transfection of viral and plasmid DNA into liver or spleen of mice. Proc Natl Acad Sci USA 81: 7529–7533

    Article  PubMed  CAS  Google Scholar 

  • Dunn W, Hubbard A, Aronson N (1980): Low temperature selectively inhibits fusion of pinocytic vesicles and lysosomes during heterophagy of 125I- asialofetuin by the perfused rat liver. J Biol Chem 255: 5971–5978

    PubMed  CAS  Google Scholar 

  • Fiume L, Mattioli A, Spinoza G (1987): Distribution of a conjugate of 9-beta-D- arabino furanosyladenine monophosphate (ara-AMP) with lactosaminated albumin in parenchymal and sinusoidal cells of rat liver. Cancer Drug Delivery 4: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Gopal T (1985): Gene transfer method for transient gene expression, stable transformation, and co-transformation of suspension cell cultures. Mol Cell Biol 5: 1188–1193

    PubMed  CAS  Google Scholar 

  • Graham F, Van der Eb A (1973): A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467

    Article  PubMed  CAS  Google Scholar 

  • Greenwood F, Hunter W, Glover J (1963): The preparation of 131I labeled human growth hormone of high specific radioactivity. Biochemistry 10: 114–119

    Google Scholar 

  • Harland R, Weintraub H (1985): Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J Cell Biol 101: 1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Jung G, et al. (1981): Biological activity of the antitumor protein neocarzinostatin coupled in a monoclonal antibody by N-succinidyl 3-(2-pyridylthio-)-propionate. Biochem Biophys Res Commun 101: 599–606

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Ashwell G (1977): Isolation and characterization of an avian hepatic binding protein specific for N-acetylglucosamine-terminated glycoproteins. J Biol Chem 252: 6536–6543

    PubMed  CAS  Google Scholar 

  • Keegan-Rogers V, Wu G (1990): Targeted protection of hepatocytes from galactosamine toxicity in vivo. Cancer Chemother and Pharmacol 26 (2): 93–96

    Article  CAS  Google Scholar 

  • Laemmli U (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680–685

    Article  Google Scholar 

  • Loyter A, Seangos G, Ruddle F (1982): Mechnisms of DNA uptake by mammalian cells: Fate of exogenously added DNA monitored by use of fluorescent dyes. Proc Natl Acad Sci USA 79: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch E, Sambrook G (1982): Technique for isolation of molecular clones. In Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring

    Google Scholar 

  • Harbor, NY Maniatis T, Jeffrey A, Klein D (1975): Nucleotide sequence of the rightward operator of phage T. Proc Natl Acad Sci USA 72: 1184–1188

    Article  Google Scholar 

  • Miller AD (1992): Human gene therapy comes of age. Nature 357: 455–460

    Article  PubMed  CAS  Google Scholar 

  • Miller D, Adam M, Miller AD (1990): Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242

    PubMed  CAS  Google Scholar 

  • Molema G, Jansen RW, Visser J, Herdewijn P, Moolnaar F, Meijer DKF (1991): Neoglycoproteins as carriers for antiviral drugs: Synthesis and analysis of protein-drug conjugates. J Med Chem 34: 1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Nagase S, Shimamune S, Shumiya S (1979): Albumin deficient rat mutant. Science 205: 590–591

    Article  PubMed  CAS  Google Scholar 

  • Nicolau C, et al. (1983): In vivo expression of rat insulin after intravenous administration of the liposome entrapped gene for rat insulin I. Proc Natl Acad Sci USA 80: 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Nicolau C, Sene C (1982): Liposome-mediated DNA transfer in eukaryotic cells. Biochim Biophys Acta 721: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Pinkert C, Ornitz D, Brinster R, Palmiter R (1987): An albumin enhancer located 101 cb upstream functions along with its promoter to direct efficient, liver- specific expression in transgenic mice. Genes and Dev 1: 268–276

    Article  PubMed  CAS  Google Scholar 

  • Potter H, et al. (1984): Enhancer dependent expression of human B immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81: 7161–7165

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld MA, et al. (1992): In Vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68: 143–155

    Article  PubMed  CAS  Google Scholar 

  • Southern E (1975): Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Stockert R, Morell A (1982): Endocytosis of glycoproteins. The Liver: Biology and Pathobiology, IM Arias, H Popper, D Shafritz, D Schachter, W Jakoby, eds. Raven Press, pp. 205–217

    Google Scholar 

  • Svensson U, Persson R (1984): Entry of adenovirus 2 into HeLa cells. J Virology 51 (3): 687–694

    PubMed  CAS  Google Scholar 

  • Tibbetts C, Giam C (1979): In Vitro association of empty adenovirus capsids with double stranded DNA. J Virology 32 (3): 995–1005

    PubMed  CAS  Google Scholar 

  • Wall D, Wilson G, Hubbard A (1980): The galactose specific recognition system of mammalian liver: receptor distribution on the hepatocyte surface. Cell 21: 19–93

    Article  Google Scholar 

  • Watanabe Y (1980): Serial inbreeding of rabbits with hyperlipidemia. Atherosclerosis 36: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Whitehead D, Sammons H (1966): A simple technique for the isolation of orosomucoid from normal and pathological sera. Biochim Biophys Acta 124: 209–211

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, et al. (1984): Introduction of new genetic material into pleuripotent hematopoietic stem cells of the mouse. Nature 310: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Wilson J, et al (1992): A novel mechanism for achieving transgene persistence in vivo after somatic gene transfer into hepatocytes. J Biol Chem 267: 11483–11489

    PubMed  CAS  Google Scholar 

  • Wilson J, et al. (1992): Hepatocyte directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor deficient rabbits. J Biol Chem 267: 963–967

    PubMed  CAS  Google Scholar 

  • Wilson J, et al. (1990): Temporary amelioration of hyperlipidemia on low density lipoprotein receptor-deficient rabbits transplanted with genetically modified hepatocytes. Proc Natl Acad Sci USA 87: 8437–8441

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Wilson J, Wu G (1989): Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J Biol Chem 264: 16985–16987

    PubMed  CAS  Google Scholar 

  • Wu G, et al. (1991): Receptor-mediated gene delivery in vivo, partial correction of genetic analbuminemia in Nagase rats. J Biol Chem 266: 14338–14342

    PubMed  CAS  Google Scholar 

  • Wu G, Wu C (1988): Evidence for targeted gene delivery to HepG2 hepatoma cells in vitro. Biochemistry 27: 887–892

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wu C (1987): Receptor mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262: 4429–4432

    PubMed  CAS  Google Scholar 

  • Wu G, Wu C (1992): Targeted delivery and expression of foreign genes in hepatocytes. Liver Diseases, G Wu, C Wu,. Marcel Dekker, NY. pp. 127–149

    Google Scholar 

  • Wu G, Wu C (1992): Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J Biol Chem 267: 12436–12439

    PubMed  CAS  Google Scholar 

  • Zhou X, Klibanov A, Huang L (1991): Lipophilic polylysines mediate effecient DNA transfection in mammalian cells. Biochim Biophys Acta 1065: 8–14

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Furs, S., Wu, G.Y. (1994). Receptor-Mediated Targeted Gene Delivery Using Asialoglycoprotein-Polylysine Conjugates. In: Wolff, J.A. (eds) Gene Therapeutics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6822-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6822-9_21

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6824-3

  • Online ISBN: 978-1-4684-6822-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics