Skip to main content

Abstract

Cell-mediated cytolysis occurs when a cytotoxic cell binds and delivers a “lethal hit” to a target cell. Several types of cells commonly found in blood are capable of performing cytolysis, including monocytes, neutrophils, eosinophils, natural killer (NK) cells, platelets, and T lymphocytes. The T-cell receptors (TCR) on T cells and the Fc γ receptors (Fc γ R) on myeloid cells, NK cells, and platelets are two well-characterized families of cell surface glycoproteins that are involved in binding target cells and triggering lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew SM, Perez P, Nicholls PJ, George AJT, Huston JS, Oppermann H, Seal DM (1991): Production of single chain bispecific antibody by recombinant DNA technology. In: Bispecific Antibodies and Targeted Cellular Cytotoxicity, ’ Second International Conference, Seillac, France. October 9–13, 1990, Romet-Lemonne JL, Fanger MW, Segal DM, eds. Fondation Nationale de Transfusion Sanguine, Les Ulis, France. 197–199

    Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988): Single-chain antigen-binding proteins. Science 242: 423–426

    Article  Google Scholar 

  • Brennan M, Davison PF, Paulus H (1985): Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin GI fragments. Science 229: 81–83

    Article  Google Scholar 

  • Brissinck J, Demanet C, Moser M, Leo L, Thielemans K (1991): Treatment of mice bearing BCL1 lymphoma with bispecific antibodies. J Immunol 147: 4019–4026

    Google Scholar 

  • Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989): A recombinant immunotoxin consisting of two antibody variable domains fused to pseudomonas exotoxin. Nature 339: 394–397

    Article  Google Scholar 

  • Clark MR, Waldmann H (1987): T-cell killing of target cells induced by hybrid antibodies: Comparison of two bispecific monoclonal antibodies. J Natl Cancer Inst 79: 1393–1401

    Google Scholar 

  • Clark M, Gilliland L, Waldmann H (1988): Hybrid antibodies for therapy. Prog Allergy 45: 31–49

    Google Scholar 

  • Corvalan JR, Smith W (1987): Construction and characterisation of a hybrid-hybrid monoclonal antibody recognising both carcinoembryonic antigen (CEA) and vinca alkaloids. Cancer Immunol Immunother 24: 127–132

    Google Scholar 

  • De Lau WBM, Heije K, Neefjes JJ, Oosterwegel M, Rozemuller E, Bast BJEG (1991): Absence of preferential homologous H/L chain association in hybrid hybridomas. J Immunol 146: 906–914

    Google Scholar 

  • De Lau WB, Van Loon AE, Heije K, Valerio D, Bast BJ (1989): Production of hybrid hybridomas based on HAT(s)-neomycin(r) double mutants. J Immunol Methods 117: 1–8

    Article  Google Scholar 

  • Demanet C, Brissinck J, Van Mechelen M, Leo O. Thiele-mans K (1991): Treatment of murine B cell lymphoma with bispecific monoclonal antibodies (anti—idiotype x anti-CD3). J Immunol 147: 1091–1097

    Google Scholar 

  • Erbe DV, Collins JE, Shen L, Graziano RF, Fanger MW (1990): The effect of cytokines on the expression and function of Fc receptors for IgG on human myeloid cells. Mol Immunol 27: 57–67

    Article  Google Scholar 

  • Ertl HC, Greene MI, Noseworthy JH, Fields BN, Nepom JT, Spriggs DR, Finberg RW (1982): Identification of idiotypic receptors on retrovirus-specific cytotoxic T cells. Proc Natl Acad Sci USA 79: 7479–7483

    Article  Google Scholar 

  • Fanger MW, Guyre PM (1991): Bispecific antibodies for targeted cellular cytotoxicity. Trends Biotechnol 9: 375–380

    Article  Google Scholar 

  • Fanger MW, Graziano RF, Shen L, Guyre PM (1989): Fc..R cytotoxicity exerted by mononuclear cells. Chem Immunol 47: 214–253

    Article  Google Scholar 

  • Garrido MA, Perez P, Titus JA, Valdayo MJ, Winkler DA, Barbieri SA, Wunderlich JR, Segal DM (1990a): Targeted cytotoxic cells in human peripheral blood lymphocytes. J Immunol 144: 2891–2898

    Google Scholar 

  • Garrido MA, Valdayo MJ, Winkler DF, Titus JA, Hecht TT, Perez P, Segal DM, Wunderlich JR (1990b): Targeting human T lymphocytes with bispecific antibodies to react against human ovarian carcinoma cells in nu/ nu mice. Cancer Res 50: 4227–4232

    Google Scholar 

  • Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987): Preparation and performance of bispecific F(ab)’2 antibody containing thioether-linked Fab’.. fragments. J Immunol 139: 2367–2375

    Google Scholar 

  • Graziano RF, Fanger MW (1987a): Human monocyte-mediated cytotoxicity: The use of Ig-bearing hybridomas as target cells to detect trigger molecules on the monocyte cell surface. J Immunol 138: 945–950

    Google Scholar 

  • Graziano RF, Fanger MW (1987b): Fc_RI and Fc RII on monocytes and granulocytes are cytotoxic trigger molecules for tumor cells. J Immunol 139: 3536–3541

    Google Scholar 

  • Graziano RF, Looney RJ, Shen L, Fanger MW (1989): Fc..R-mediated killing by eosinophils. J Immunol 142: 230–235

    Google Scholar 

  • Henkart PA (1985): Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol 3: 31–58

    Article  Google Scholar 

  • Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984): Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med 160: 75–93

    Article  Google Scholar 

  • Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies SN, Ridge RJ, Bruccoleri RE, Haber E, Crea R (1988): Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia colie. Proc Natl Acad Sci USA 85: 5879–5883

    Article  Google Scholar 

  • Jung G, Muller-Eberhard HJ (1988): An in vitro model for tumor immunotherapy with antibody heteroconjugates. Immunol Today 9: 257–260

    Article  Google Scholar 

  • Jung G, Freimann U, Von Marschall Z, Reisfeld RA, Wilmanns W (1991): Target cell-induced T cell activation with bi-and trispecific antibody fragments. Eur J Immunol 21: 2431–2435

    Article  Google Scholar 

  • Jung G, Honsik CJ, Reisfeld RA, Muller-Eberhard HJ (1986): Activation of human peripheral blood mononuclear cells by anti-T3: Killing of tumor target cells coated with anti-target-anti-T3 conjugates. Proc Natl Acad Sci USA 83: 4479–4483

    Article  Google Scholar 

  • Jung G, Ledbetter JA, Muller-Eberhard HJ (1987): Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heterconjugates. Proc Natl Acad Sci USA 84: 4611–4615

    Article  Google Scholar 

  • Karawajew L, Micheel B, Behrsing O, Gaestel M (1987): Bispecific antibody-producing hybrid hybridomas selected by a fluorescence activated cell sorter. J Immunol Methods 96: 265–270

    Article  Google Scholar 

  • Karawajew L, Rudchenko S, Wlasik T, Trakht I, Rakitskaya V (1990): Flow sorting of hybrid hybridomas using the DNA stain Hoechst 33342. J Immunol Methods 129: 277–282

    Article  Google Scholar 

  • Karpovsky B, Titus JA, Stephany DA, Segal DM (1984): Production of target-specific effector cells using heterocross-linked aggregates containing anti-target cell and anti-Fe.. receptor antibodies. J Exp Med 160: 1686–1701

    Article  Google Scholar 

  • King TP, Li Y, Kochoumian L (1978): Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry 17: 1499–1506

    Article  Google Scholar 

  • Koolwijk P, Rozemuller E, Stad RK, De Lau WB, Bast BJ (1988): Enrichment and selection of hybrid hybridomas by Percoll density gradiant centrifugation and fluorescent-activated cell sorting. Hybridoma 7: 217–225

    Article  Google Scholar 

  • Lancki DW, Ma DI, Havran WL, Fitch FW (1984): Cell surface structures involved in T cell receptor complex but involved in T cell activation. Immunol Rev 81: 65–94

    Article  Google Scholar 

  • Lanier LL, Yu G, Phillips Hi (1989): Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342: 803–805

    Article  Google Scholar 

  • Lanzavecchia A, Scheidegger D (1987): The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 17: 105–111

    Article  Google Scholar 

  • Larrick JW, Wright SC (1990): Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J 4: 3215–3223

    Google Scholar 

  • Leeuwenberg JTM, Spits H, Tax WJM, Capel PJA (1985): Induction of nonspecific cytotoxicity by monoclonal anti-T3 antibodies. J Immunol 134: 3770–3775

    Google Scholar 

  • Leo O, Foo M, Segal DM, Shevach E, Bluestone JA (1987): Activation of murine T lymphocytes with monoclonal antibodies: Detection on Lyt2+ cells of an antigen not associated with the T cell activation. J Immunol 139: 1214–1222

    Google Scholar 

  • Liu MA, Kranz DM, Kurnick JT, Boyle LA, Levy R, Eisen HN (1985): Heteroantibody duplexes target cells for lysis by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 82: 8648–8652

    Article  Google Scholar 

  • Lovchik JC, Hong R (1977): Antibody-dependent cell-mediated cytolysis (ADCC): analyses and projections. Prog Allergy 22: 1–44

    Google Scholar 

  • Mezzanzanica D, Garrido MA, Noblock DS, Daddona PE, Andrew SM, Zurawski VR, Segal DM, Wunderlich JR (1991): Human T-lymphocytes targeted against an established ovarian carcinoma with bispecific F(ab’), antibody prolong host survival in a murine xenograft model. Cancer Res 51: 5716–5721

    Google Scholar 

  • Milstein C, Cuello AC (1983): Hybrid hybridomas and their use in immunohistochemistry. Nature 305: 537–540

    Article  Google Scholar 

  • Milstein C, Cuello AC (1984): Hybrid hybridomas and production of bispecific monoclonal antibodies. Immunol Today 5: 299–304

    Article  Google Scholar 

  • Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM, Regazzoni M, Tagliabue E, Colnaghi MI (1987): Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int Cancer 39: 297–303

    Article  Google Scholar 

  • Moran TM, Usuba O, Kuzu Y, Schulman J, Bona CA (1991): Inhibition of multicycle influenza virus replication by hybrid antibody-directed cytotoxic T lymphocyte lysis. J Immunol 146: 321–326

    Google Scholar 

  • Moretta A, Poggi A, Pende D, Tripodi G, Orengo AM, Pella N, Augugliaro R, Bottino C, Ciccone E, Moretta L (1991): CD69-mediated pathway of lymphocyte activation: Anti-CD69 monoclonal antibodies trigger the cytolytic activity of different lymphoid effector cells with the exception of cytolytic T lymphocytes expressing T cell receptor a/ß. J Exp Med 174: 1393–1398

    Article  Google Scholar 

  • Nisonoff A, Mandy WJ (1962): Quantitative estimation of the hybridization of rabbit antibodies. Nature 194: 355–359

    Article  Google Scholar 

  • Nitta T, Ikeda M, Azuma A, Yagita H, Sato K, Okumura K, Steinman L (1991): Clinical results of specific targeting therapy against human malignant glioma and prospects for future reagents based on the restricted T cell receptor repertoire in tumor infiltrating lymphocytes. In: Bispecific Antibodies and Targeted Cellular Cytoxicity. Second International Conference, Seillac, France October 9–13, 1990, Romet-Lemonne JL, Fanger MW, Segal DM, eds. Les Ulis, France: Foundation Nationale de Transfusion Sanguine 233–235

    Google Scholar 

  • Nitta T, Sato K, Yagita H, Okumura K, Ishii S (1990): Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335: 368–371

    Article  Google Scholar 

  • Old H (1985): Tumor necrosis factor (TNF). Science 230: 630–632

    Article  Google Scholar 

  • Ortho Multicenter Transplant Study Group (1985): A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med 313: 337–342

    Article  Google Scholar 

  • Paya CV, McKean DJ, Segal DM, Schoon RA, Schowalter SD, Leibson PJ (1989): Heteroconjugate antibodies enhance cell-mediated anti-herpes simplex virus immunity. J Immunol 142: 666–671

    Google Scholar 

  • Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM (1985): Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316: 354–356

    Article  Google Scholar 

  • Perez P, Hoffman RW, Titus JA, Segal DM (1986a): Specific targeting of human peripheral blood T cells by heteroaggregates containing anti-T3 crosslinked to anti-target cell antibodies. J Exp Med 163: 166–178

    Article  Google Scholar 

  • Perez P, Titus JA, Lotze MT, Cuttitta F, Longo DL, Groves ES, Rabin H, Durda PJ, Segal DM (1986b): Specific lysis of human tumor cells by T cells coated with anti-T3 crosslinked to anti-tumor antibody. J Immunol 137: 2069–2072

    Google Scholar 

  • Podack ER, Kupfer A (1991): T-cell effector functions: Mechanisms for delivery of cytotoxicity and help. Annu Rev Cell Biol 7: 479–504

    Article  Google Scholar 

  • Qian JH, Titus JA, Andrew SM, Mezzanzanica D, Garrido MA, Wunderlich JR, Segal DM (1991): Human PBL targeted with bispecific antibodies release cytokines that are essential for inhibiting tumor growth. J Immunol 146: 3250–3256

    Google Scholar 

  • Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies SN, Ridge RJ, Bruccoleri RE, Haber E, Crea R (1988): Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia colie. Proc Natl Acad Sci USA 85: 5879–5883

    Article  Google Scholar 

  • Segal DM, Snider DP (1989): Targeting and activation of cytotoxic lymphocytes. Chem Immunol 47: 179–213

    Article  Google Scholar 

  • Segal DM, Wunderlich JR (1988): Targeting of cytotoxic cells with heterocrosslinked antibodies. Cancer Invest 6: 83–92

    Article  Google Scholar 

  • Segal DM, Dower SK, Titus JA (1983): The role of non-immune IgG in controlling IgG-mediated effector functions. Mol Immunol 20: 1177–1189

    Article  Google Scholar 

  • Seth A, Gote L, Nagarkatti M, Nagarkatti PS (1991): T-cell-receptor-independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-I4 Proc nat Acad Sci USA 88: 7877–7881

    Article  Google Scholar 

  • Shalaby MR, Shepard HM, Presta L, Rodrigues ML, Beverley PCL, Feldmann M, Carter P (1992): Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells over-expressing the HER2 protooncogene. J Exp Med 175: 217–225

    Article  Google Scholar 

  • Shen LR, Graziano RF, Fanger MW (1989): The functional properties of Fc gamma RI, II and III on myeloid cells: A comparative study of killing of erythrocytes and tumor cells mediated through the different Fc receptors. Mol Immunol 26: 959–969

    Article  Google Scholar 

  • Shen L, Guyre PM, Anderson CL, Fanger MW (1986): Heteroantibody-mediated cytotoxicity: Antibody to the high affinity Fc receptor for IgG mediates cytotoxicity by human monocytes that is enhanced by interferon-y and is not blocked by human IgG. J Immunol 137: 3378–3382

    Google Scholar 

  • Shi T, Eaton AM, Ring DB (1991): Selection of hybrid hybridomas by flowing cytometry using a new combination of fluorescent vital stains. J Immunol Methods 141: 165–175

    Article  Google Scholar 

  • Siliciano RF, Pratt JC, Schmidt RE, Ritz J, Reinherz EL (1985): Activation of cytotoxic T lymphocyte and natural killer cell function through the TI sheep erthrocyte binding protein. Nature 317: 428–429

    Article  Google Scholar 

  • Songsivilai S, Lachmann PJ (1990): Bispecific antibody: A tool for diagnosis and treatment of disease. Clin Exp Immunol 79: 315–321

    Article  Google Scholar 

  • Songsivilai S, Clissold PM, Lachmann PJ (1989): A novel strategy for producing chimeric bispecific antibodies by gene transfection. Biochem Biophys Res Commun 164: 271–276

    Article  Google Scholar 

  • Springer TA (1990): Adhesion receptors of the immune system. Nature 346: 425–434

    Article  Google Scholar 

  • Staerz UD, Bevan MJ (1986a): Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 83: 1453–1457

    Article  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988): Single-chain antigen-binding proteins. Science 242: 423–426

    Article  Google Scholar 

  • Staerz UD, Kanagawa O, Bevan MJ (1985): Hybrid antibodies can target sites for attack by T cells. Nature 314: 628–631

    Article  Google Scholar 

  • Suresh MR, Cuello AC, Milstein C (1986): Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc Natl Acad Sci USA 83: 7989–7993

    Article  Google Scholar 

  • Tai MS, Mudgett-Hunter M, Levinson D, Wu GM, Haber E, Oppermann H, Huston JS (1990): A bifunctional fusion protein containing Fe-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29: 8024–8030

    Article  Google Scholar 

  • Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, Segal DM (1987a): Human T cells targeted with anti-T3 crosslinked to anti-tumor antibody prevent tumor growth in nude mice. J Immunol 138: 4018–4022

    Google Scholar 

  • Titus JA, Perez P, Kaubisch A, Garrido MA, Segal DM (1987b): Human K/NK cells targeted with heterocrosslinked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J Immunol 139: 3153–3158

    Google Scholar 

  • Traunecker A, Lanzavecchia A, Karjalainen K (1991): Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells. EMBO J 10: 3655–3659

    Google Scholar 

  • Tschopp J, Nabholz M (1990): Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 8: 279–302

    Article  Google Scholar 

  • Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987): Preparation and performance of bispecific F(ab)’2 antibody containing thioether-linked Fab’.. fragments. J Immunol 139: 2367–2375

    Google Scholar 

  • Tutt A, Stevenson GT, Glennie MJ (1991b): Trispecific F(ab’)3 derivatives that use cooperative signaling via the TCR/CD3 complex and CD2 to activate and redirect resting cytotoxic T cells. J Immunol 147: 60–69

    Google Scholar 

  • Urnovitz HB, Chang Y, Scott M, Fleischmann J, Lynch RG (1988): IgA:IgM and IgA:IgA hybrid hybridomas secrete heteropolymeric immunoglobulins that are polyvalent and bispecific. J Immunol 140: 558–563

    Google Scholar 

  • Wegener A-MK, Letourneur F, Hoeveler A, Brocker T, Luton F, Malissen B (1992): The T cell receptor/CD3 complex is composed of at least two autonomous transduction molecules. Cell 68: 83–95

    Article  Google Scholar 

  • Weiner GJ, Hillstrom JR (1991): Bispecific anti-idiotype/ anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol 147: 4035–4044

    Google Scholar 

  • Winter G, Milstein C (1991): Man-made antibodies. Nature 349: 293–299

    Article  Google Scholar 

  • Wong JT, Colvin RB (1987): Bispecific monoclonal antibodies: Selective binding and complement fixation to cells that express two different surface antigens. J Immunol 139: 1369–1374

    Google Scholar 

  • Zarling JM, Moran PA, Grosmarie LS, McClure J, Shriver K, Ledbetter JA (1988): Lysis of cells infected with HIV-1 by human lymphocytes targeted with monoclonal antibody heteroconjugates. J Immunol 140: 2609–2613

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Boston

About this chapter

Cite this chapter

Segal, D.M., Jost, C.R., George, A.J.T. (1993). Targeted Cellular Cytotoxicity. In: Sitkovsky, M.V., Henkart, P.A. (eds) Cytotoxic Cells: Recognition, Effector Function, Generation, and Methods. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6814-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6814-4_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6816-8

  • Online ISBN: 978-1-4684-6814-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics