Skip to main content

Transcriptional Control of Pituitary Gene Expression

  • Chapter
Gene Expression

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

Cascades of interacting regulatory genes controlling developmental pathways have been defined in organisms such as Drosophila (Chalfie and Au, 1989; Cohen and Jurgens, 1991; Gehring, 1987; Ingham, 1988; Ingham and Martinez Arias, 1992; Moses, 1991; Nusslein-Volhard and Wieschaus 1980; Nusslein-Volhard et al., 1987; Perkins and Perrimon, 1991; St. Johnston and Nusslein-Volhard, 1992) and the nematode Caenorhabditis elegans (Davidson, 1990; Sternberg and Horvitz, 1991). The developmental regulators include transcription factors, kinases, phosphatases, growth factors, receptors, and cell-adhesion molecules. In Drosophila, products of maternally expressed genes control expression of zygotic segmentation genes, the products of which regulate homeotic gene expression; regulation is also exerted between genes of the same class. As a result the embryo is divided into a meshwork of metameric units, each expressing a unique combination of homeotic genes. These genes contain a conserved homeobox, encoding a 60-amino-acid home-odomain that functions in DNA binding. By acting as transcription factors, the homeodomain proteins orchestrate activation of a unique combination of target genes that causes the cells to enter a specific morphogenetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer TK, Lefebvre P, Wolford RG, Hager GL (1992): Transcription factor loading on the MMTV promoter: A bimodal mechanism for promoter activation. Science 255(5051): 1573–1576.

    Google Scholar 

  • Attisano L, Wrana JL, Cheifetz S, Massague J (1992): Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68(1):97–108.

    Google Scholar 

  • Aurora R, Herr W (1992): Segments of the POU domain influence one another’s DNA-binding specificity. Mol Cell Biol 12(2):455–467.

    Google Scholar 

  • Barinaga M, Yamonoto G, Rivier C, Vale W, Evans R, Rosenfeld MG (1985a): Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature (Lond) 306:84–85.

    Google Scholar 

  • Barinaga M, Bilezikjian LM, Vale WW, Rosenfeld MG (1985b): Independent effects of growth hormone releasing factor on growth hormone release and gene transcription. Nature (Lond) 314:279–281.

    Google Scholar 

  • Barsh GS, Seeburg PH, Gelinas RE (1983): The human growth hormone gene family: structure and evolution of the chromosomal locus. Nucleic Acids Res 11:3939.

    Google Scholar 

  • Bedo G, Santisteban P, Aranda A (1989): Retinoic acid regulates growth hormone gene expression. Nature (Lond) 339(6221):231–234.

    Google Scholar 

  • Behringer RR, Mathews LS, Palmiter RD, Brinster RL (1988): Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes & Dev 2:453–461.

    Google Scholar 

  • Bienz M, Tremml G (1988): Domain of Ultrabithorax expression in Droso-phila visceral mesoderm from autoregulation and exclusion. Nature (Lond) 333(6173): 576–578.

    Google Scholar 

  • Bilezikjian LM, Vale W (1983): Stimulation of adenosine 3′,5′ monophosphate production by growth hormone-releasing factor and its inhibition by somatostatin in anterior pituitary cells in vitro. Endocrinology 113:1726–1731.

    Google Scholar 

  • Bilezikjian LM, Corrigan AZ, Vale W (1990): Activin-A modulates growth hormone secretion from cultures of rat anterior pituitary cells. Endocrinology 126(5):2369–2376.

    Google Scholar 

  • Billestrup N, Swanson LW, Vale W (1986): Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 83:6854–6857.

    Google Scholar 

  • Billestrup N, Gonzalez Manchon C, Potter E, Vale W (1990): Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro. Mol Endocrinol 4(2):356–362.

    Google Scholar 

  • Billestrup N, Mitchell RL, Vale W, Verma IM (1987): Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells. Mol Endocrinol l(4):300–305.

    Google Scholar 

  • Blau HM (1992): Differentiation requires continuous active control. Annu Rev Biochem 61:1213–1230.

    Google Scholar 

  • Bodner M, Karin M (1987): A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell 50(2):267–275.

    Google Scholar 

  • Bodner M, Castrillo J-L, Theill LE, Deerinck T, Ellisman M, Karin M (1988): The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 55(3):505–518.

    Google Scholar 

  • Borrelli E, Hayman RA, Arias C, Sawchenko PE, Evans RM (1989): Transgenic mice with inducible dwarfism. Nature (Lond) 339(6225):538–541.

    Google Scholar 

  • Bradley DJ, Young WSE, Weinberger C (1989): Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci USA 86(18):7250–7254.

    Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973): Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79.

    Google Scholar 

  • Brent GA, Harney JW, Moore DD, Larsen PR (1988): Multihormonal regulation of the human, rat, and bovine growth hormone promoters: Differential effects of 3′,5′-cyclic adenosine monophosphate, thyroid hormone, and glucocorticoids. Mol Endocrinol 2(9):792–798.

    Google Scholar 

  • Brent GA, Larsen PR, Harney JW, Koenig RJ, Moore DD (1989a): Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. J Biol Chem 264(1):178–182.

    Google Scholar 

  • Brent GA, Harney JW, Chen Y, Warne RL, Moore DD, Larsen PR (1989b): Mutations of the rat growth hormone promoter which increase and decrease response to thyroid hormone define a consensus thyroid hormone response element. Mol Endocrinol 3(12): 1996–2004.

    Google Scholar 

  • Brent GA, Dunn MK, Harney JW, Gulick T, Larsen PR, Moore DD (1989c): Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biol 1(3):329–136.

    Google Scholar 

  • Brent GA, Moore DD, Larsen PR (1991a): Thyroid hormone regulation of gene expression. Annu Rev Physiol 53:17–35.

    Google Scholar 

  • Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, Larsen PR (1991b): Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: Implications for positive and negative regulation by 3,5,3’-triiodothyronine. Mol Endocrinol 5(4):542–548.

    Google Scholar 

  • Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, Larsen PR (1992): Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements. Mol Endocrinol 6(4):502–514.

    Google Scholar 

  • Brindle PK, Montminy MR (1992): The CREB family of transcription activators. Curr Opin Genet Dev 2(2): 199–204.

    Google Scholar 

  • Bruggemeier U, Kalff M, Franke S, Scheidereit C, Beato M (1991): Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell 64(3):565–572.

    Google Scholar 

  • Burton FH, Hasel KW, Bloom FE, Sutcliffe JG (1991): Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene. Nature (Lond) 350(6313):74–77.

    Google Scholar 

  • Casanova J, Copp RP, Janocko L, Samuels HH (1985): 5′-Flanking DNA of the rat growth hormone gene mediates regulated expression by thyroid hormone. J Biol Chem 260:11744–11748.

    Google Scholar 

  • Castrillo J-L, Bodner M, Karin M (1989): Purification of growth hormone-specific transcription factor GHF-1 containing homeobox. Science 243(4892):814–817.

    Google Scholar 

  • Castrillo J-L, Theill LE, Karin M (1991): Function of the homeodomain protein GHF-1 in pituitary cell proliferation. Science 253(5016): 197–199.

    Google Scholar 

  • Catanzaro DF, West BL, Baxter JD, Reudelhuber TL (1987): A pituitary-specific factor interacts with an upstream promoter element in the rat growth hormone gene. Mol Endocrinol l(l):90–96.

    Google Scholar 

  • Cattini PA, Eberhardt NL (1987): Regulated expression of chimaeric genes containing the 5′-flanking regions of human growth hormone-related genes in transiently transfected rat anterior pituitary tumor cells. Nucleic Acids Res 15:1297–1309.

    Google Scholar 

  • Chalfie M, Au M (1989): Genetic control of differentiation of the Caenorhabditis elegans touch receptor. Science 243(4894 Pt 1): 1027–1033.

    Google Scholar 

  • Chatelain A, Dupuoy JP, Dubois MP (1979): Ontogenesis of cells producing polypeptide hormones (ACTH, MSH, LPH, GH, prolactin) in the fetal hypophysis of the rat: Influence of the hypothalamus. Cell Tissue Res 196:409–427.

    Google Scholar 

  • Chen EY, Liao YC, Smith DH, Barrera-Saldaña HA, Gelinas RE, Seeburg PH (1989): The human growth hormone locus: Nucleotide sequence, biology, and evolution. Genomics 4(4):479–497.

    Google Scholar 

  • Chen RP, Ingraham HA, Treacy MN, Albert VR, Wilson L, Rosenfeld MG (1990): Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Nature (Lond) 346(6284):583–586.

    Google Scholar 

  • Chomczynski P, Brar A, Frohman LA (1988): Growth hormone synthesis and secretion by a somatomammotroph cell line derived from normal adult pituitary of the rat. Endocrinology 123(5):2276–2283.

    Google Scholar 

  • Christiansen JS, Jorgensen JO (1991): Beneficial effects of GH replacement therapy in adults. Acta-Endocrinol (Copenh) 125(1)7–13.

    Google Scholar 

  • Coenjaerts FE, De Vries E, Pruijn GJ, Van Driel W, Bloemers SM, Van der Lugt NM, Van der Vliet PC (1991): Enhancement of DNA replication by transcription factors NFI and NFIII/Oct-1 depends critically on the positions of their binding sites in the adenovirus origin of replication. Biochim Biophys Acta 1090(l):61–69.

    Google Scholar 

  • Cohen S, Jurgens G (1991): Drosophila headlines. Trends Genet 7(8):267–272.

    Google Scholar 

  • Copp RP, Samuels HH (1989): Identification of an adenosine 3′,5′-monophos-phate (cAMP)-responsive region in the rat growth hormone gene: Evidence for independent and synergistic effects of cAMP and thyroid hormone on gene expression. Mol Endocrinol 3(5):790–796.

    Google Scholar 

  • Cordingley MG, Riegel AT, Hager GL (1987): Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48(2):261–270.

    Google Scholar 

  • Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, Mason AJ, Chin WW, Schwall RH, Vale W (1991): Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology 128(3): 1682–1684.

    Google Scholar 

  • Courey AJ, Holzman DA, Jackson SP, Tjian R (1989): Synergistic activation by the glutamine-rich domains of human transcription factor Spl. Cell 59(5):827–836.

    Google Scholar 

  • Crenshaw EB III, Kalla K, Simmons DM, Swanson LW, Rosenfeld MG (1989): Cell-specific expression of the prolactin gene in transgenic mice is controlled by synergistic interactions between promoter and enhancer elements. Genes & Dev 3(7):959–972.

    Google Scholar 

  • Crew MD, Spindler SR (1986): Thyroid hormone regulation of the transfected rat growth hormone promoter. J Biol Chem 261(11):5018–5022.

    Google Scholar 

  • Dana S, Karin M (1989): Induction of human growth hormone promoter activity by the adenosine 3′,5′-monophosphate pathway involves a novel responsive element. Mol Endocrinol 3(5):815–821.

    Google Scholar 

  • Davidson EH (1990): How embryos work: A comparative view of diverse modes of cell fate specification. Development (Camb) 108(3):365–389.

    Google Scholar 

  • Davidson MB (1987): Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 8(2):115–131.

    Google Scholar 

  • Davis KD, Lazar MA (1992): Selective antagonism of thyroid hormone action by retinoic acid. J Biol Chem 267(5):3185–3189.

    Google Scholar 

  • Dearden NM, Holmes RL (1976): Cyto-differentiation and portal vascular development in the mouse adenohypophysis. J Anat 121(3):551–569.

    Google Scholar 

  • DeLuca LM (1991): Retinoids and their receptors in differentiation, embryogen-esis, and neoplasia. FASEB J 5(14):2924–2933.

    Google Scholar 

  • Deschamps J, Meijlink F (1992): Mammalian homeobox genes in normal development and neoplasia. Crit Rev Oncog 3(1–2): 117–173.

    Google Scholar 

  • De-Simone V, Cortese R (1992): Transcription factors and liver-specific genes. Biochim Biophys Acta 1132(2): 119–126.

    Google Scholar 

  • Diamond DJ, Goodman HM (1985): Regulation of growth hormone messenger RNA synthesis by dexamethasone and triiodothyronine. J Mol Biol 181:41–62.

    Google Scholar 

  • Dixon WJ, Theill LE, Karin M, Tullius TD: Structural dissection of the DNA-binding interactions of GHF-1 with the GH promoter (in manuscript).

    Google Scholar 

  • Dobner PR, Kawasaki ES, Yu L-Y, Bancroft FC (1981): Thyroid or glucocorticoid hormone induces pre-growth-hormone mRNA and its probable nuclear precursor in rat pituitary cells. Proc Natl Acad Sci USA 78(4):2230–2234.

    Google Scholar 

  • DollĂ© P, Castrillo J-L, Theill LE, Deerinck T, Ellisman M, Karin M (1990): Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell 60(5): 809–820.

    Google Scholar 

  • Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, Swanson LW, Rosenfeld MG (1991): TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes & Dev 5(10): 1739–1753.

    Google Scholar 

  • Dynlacht BD, Attardi LD, Admon A, Freeman M, Tjian R (1989): Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes & Dev 3(11): 1677–1688.

    Google Scholar 

  • Eicher EM, Beamer WG (1980): New mouse dw allele: Genetic location and effects on lifespan and growth hormone levels. J Hered 71:187–190.

    Google Scholar 

  • Eliard PH, Marchand MJ, Rousseau GG, Formstecher P, Mathy-Hartert M, Belayew A, Martial JA (1985): Binding of the human glucocorticoid receptor to defined regions in the human growth hormone and placental lactogen genes. DNA (NY) 4:409–417.

    Google Scholar 

  • Evans T, Frelsenfeld G, Reitman M (1990): Control of globin gene transcription. Annu Rev Cell Biol 6:95–124.

    Google Scholar 

  • Evans RM, Birnberg NC, Rosenfeld MG (1982): Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression. Proc Natl Acad Sci USA 79:7659–7663.

    Google Scholar 

  • Felsenfeld G (1992): Chromatin as an essential part of the transcriptional mechanism. Nature 355(6357):219–224.

    Google Scholar 

  • Fienberg AA, Utset MF, Bogarad LD, Hart CP, Awgulewitsch A, Ferguson Smith A, Fainsod A, Rabin M, Ruddle FH (1987): Homeobox genes in murine development. Curr Top Dev Biol 23:233–256.

    Google Scholar 

  • Fink G, Smith GC (1971): Ultrastructural features of the developing hypothal-amo-hypophysial axis in the rat. Z Zeilforsch 119:208–226.

    Google Scholar 

  • Finney M, Ruvkun G (1990): The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63(5):895–905.

    Google Scholar 

  • Finney M, Ruvkun G, Horvitz HR (1988): The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell 55(5):757–769.

    Google Scholar 

  • Flug F, Copp RP, Casanova J, Horowitz ZD, Janocko L, Plotnick M, Samuels HH (1987): cis-Acting elements of the rat growth hormone gene which mediate basal and regulated expression by thyroid hormone. J Biol Chem 262(13):6373–6382.

    Google Scholar 

  • Forman BM, Yang CR, Stanley F, Casanova J, Samuels HH (1988): c-erbA pro-tooncogenes mediate thyroid hormone-dependent and independent regulation of the rat growth hormone and prolactin genes. Mol Endocrinol 2(10):902–911.

    Google Scholar 

  • Foulkes NS, Borrelli E, Sassone Corsi P (1991): CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64(4):739–749.

    Google Scholar 

  • Fox SR, Jong MT, Casanova J, Ye ZS, Stanley F, Samuels HH (1990): The homeodomain protein, Pit-l/GHF-1, is capable of binding to and activating cell-specific elements of both the growth hormone and prolactin gene promoters. Mol Endocrinol 4(7): 1069–1080.

    Google Scholar 

  • Frawley LS (1989): Mammosomatotrophs: current status and possible functions. Trends Endocrinol Metabol 1:31–34.

    Google Scholar 

  • Frawley LS, Boockfor FR (1991): Mammosomatotrophs: Presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 12(4):337–355.

    Google Scholar 

  • Frawley LS, Boockfor FR, Hoeffler JP (1985a): Functional maturation of soma-totropes in fetal rat pituitaries: analysis by reverse hemolytic plaques assay. Endocrinology 116:2355–2360.

    Google Scholar 

  • Frawley LS, Boockfor FR, Hoeffler JP (1985b): Identification by plaque assays of a pituitary cell type that secretes both growth hormone and prolactin. Endocrinology 116:734–737.

    Google Scholar 

  • Frohman LA, Szabo M (1981): Ectopic production of growth hormone-releasing factor by carcinoid and pancreatic islet tumors associated with acromegaly. Prog Clin Biol Res 74:259–271.

    Google Scholar 

  • Gash D, Ahmad N, Schechter J (1982): Comparison of gonadotroph, thyrotroph and mammotroph development in situ, in transplants and in organ culture. Neuroendocrinology 34:222–228.

    Google Scholar 

  • Gehring WJ (1987): Horneo boxes in the study of development. Science 236(4806): 1245–1252.

    Google Scholar 

  • Gelato MC, Merriam GR (1986): Growth hormone releasing hormone. Annu Rev Physiol 48:569–91.

    Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987): Identification of a receptor for the morphogen retinoic acid. Nature (Lond) 330(6149):624–629.

    Google Scholar 

  • Glass CK, Franco R, Weinberger C, Albert VR, Evans RM, Rosenfeld MG (1987): A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature (Lond) 329(6141):738–741.

    Google Scholar 

  • Glass CK, Holloway JM, Devary OV, Rosenfeld MG (1988): The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54(3):313–323.

    Google Scholar 

  • Glineur C, Bailly M, Ghysdael J (1989): The c-erbA alpha-encoded thyroid hormone receptor is phosphorylated in its amino terminal domain by caScin kinase II. Oncogene 4(10): 1247–1254.

    Google Scholar 

  • Goldberg Y, Glineur C, Gesquiere JC, Ricouart A, Sap J, Vennstrom B, Ghysdael J (1988): Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein. EMBO J (8):2425–2433.

    Google Scholar 

  • Gonzalez GA, Montminy MR (1989): Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59(4):675–680.

    Google Scholar 

  • Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W III, Vale WW, Montminy MR (1989): A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature (Lond) 337(6209):749–752.

    Google Scholar 

  • Gould AP, Brookman JJ, Strutt DI, White RA (1990): Targets of homeotic gene control in Drosophila. Nature (Lond) 348(6299):308–312.

    Google Scholar 

  • Goulding MD, Gruss P (1989): The homeobox in vertebrate development. Curr Opin Cell Biol 1(6): 1088–1093.

    Google Scholar 

  • Graba Y, Aragnol D, Laurenti P, Garzino V, Charmot D, Berenger H, Pradel J (1992): Homeotic control in Drosophila; the scabrous gene is an in vivo target of Ultrabithorax proteins. EMBO J 11(9):3375–3384.

    Google Scholar 

  • Guillemin R Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB (1982): Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218:585–587.

    Google Scholar 

  • Hatzopoulos AK, Stoykova AS, Erselius JR, Goulding M, Neuman T, Gruss P (1990): Structure and expression of the mouse Oct2a and Oct2b, two differentially spliced products of the same gene. Development 109(2):349–362.

    Google Scholar 

  • Hayes J, Tullius TD (1989): The missing nucleoside experiment: a new technique to study recognition of DNA by protein. Biochemistry 28(24):9521–9527.

    Google Scholar 

  • Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G (1988): The POU domain: A large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes & Dev 2(12a):1513–1516.

    Google Scholar 

  • Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992): 9-cis Retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68(2)397–406.

    Google Scholar 

  • Hiromi Y, Gehring WJ (1987): Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50(6): 963–974.

    Google Scholar 

  • Hodin RA, Lazar MA, Wintman BI, Darling DS, Koenig RJ, Larsen PR, Moore DD, Chin WW (1989): Identification of a thyroid hormone receptor that is pituitary-specific. Science 244(4900):76–79.

    Google Scholar 

  • Hoeffler JP, Boockfor FR, Frawley LL (1985): Ontogeny of prolactin cells in neonatal rats: Initial prolactin secretors also release growth hormone. Endocrinology 117:187–195.

    Google Scholar 

  • Dcuyama S, Natori S, Nawata H, Kato K, Ibayashi H, Kariya T, Sakai T, Rivier J, Vale W (1988): Characterization of growth hormone-releasing hormone receptors in pituitary adenomas from patients with acromegaly. J Clin Endocrinol Metab 66(6): 1265–1271.

    Google Scholar 

  • Imagawa M, Chiu R, Karin M (1987): Transcription factor AP-2 mediates induction by two different signal-transduction pathways: Protein kinase C and cAMP. CW/51(2):251–260.

    Google Scholar 

  • Ingham PW (1988): The molecular genetics of embryonic pattern formation in Drosophila. Nature (Lond) 335:25–34.

    Google Scholar 

  • Ingham PW, Martinez Arias A (1992): Boundaries and fields in early embryos. Cell 68(2):221–235.

    Google Scholar 

  • Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE Lin CR, Simmons DM, Swanson L, Rosenfeld MG (1988): A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55(3):519–529.

    Google Scholar 

  • Ingraham HA, Flynn SE, Voss JW, Albert VR, Kapiloff MS, Wilson L, Rosenfeld MG (1990): The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-1 Pit-1 interactions. Cell 61(6): 1021–1033.

    Google Scholar 

  • Inoue K, Hattori M, Sakai T, Inukai S, Fujimoto N, Ito A (1990): Establishment of a series of pituitary clonal cell lines differing in morphology, hormone secretion, and response to estrogen. Endocrinology 126(5):2313–2320.

    Google Scholar 

  • Isaacs RE, Findell PR, Mellon P, Wilson CB, Baxter JD (1987): Hormonal regulation of expression of the endogenous and transfected human growth hormone gene. Mol Endocrinol 1:569–576.

    Google Scholar 

  • Isaksson OG, Lindahl A, Nilsson A, Isgaard J (1987): Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr Rev 8(4):426–438.

    Google Scholar 

  • Ishikawa K, Katakami H, Jansson J-O, Frohman LA (1986): Ontogenesis of growth hormone-releasing hormone neurons in the rat hypothalamus. Neu-roendocrinology 43: 537–542.

    Google Scholar 

  • Johnson WA, Hirsh J (1990): Binding of a Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons. Nature (Lond) 343(6257):467–470.

    Google Scholar 

  • Judd AM, MacLeod RM (1984): Growth hormone releasing factor increases growth hormone from MtTW15 pituitary tumors. Brain Res 308:137–140.

    Google Scholar 

  • Kao CC, Lieberman PM, Schmidt MC, Zhou Q, Pei R, Berk AJ (1990): Cloning of a transcriptionally active human TATA binding factor. Science 248(4963): 1646–1650.

    Google Scholar 

  • Kapiloff MS, Farkash Y, Wegner M, Rosenfeld MG (1991): Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science 253(5021):786–789.

    Google Scholar 

  • Karin M, Castrillo J-L, Theill LE (1990): Growth hormone gene regulation: A paradigm for cell-type-specific gene activation. Trends Genet 6(3):92–96.

    Google Scholar 

  • Kessel M, Grass P (1990): Murine developmental control genes. Science 249(4967):374–379.

    Google Scholar 

  • Kineman RD, Faught WJ, Frawley LS (1992): Steroids can modulate transdiffer-entiation of prolactin and growth hormone cells in bovine pituitary cultures. Endocrinology 130(6):3289–3294.

    Google Scholar 

  • Kirchgessner TG, Chuat JC, Heinzmann C, Etienne J, Guilhot S, Svenson K, Ameis D, Pilon C, dAuriol L, Andalibi A (1989): Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc Natl Acad Sci USA 86(24):9647–9651.

    Google Scholar 

  • Kissinger CR, Liu BS, Martin Blanco E, Kornberg TB, Pabo CO (1990): Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Xresolution: A framework for understanding homeodomain-DNA interactions. Cell 63(3):579–590.

    Google Scholar 

  • Kitaoka M, Kojima I, Ogata E (1988): Activin A: A modulator of multiple types of anterior pituitary cells. Biochem Biophys Res Commun 157(l):48–54.

    Google Scholar 

  • Kitaoka M, Takano K, Tanaka Y, Kojima I, Teramoto A, Ogata E (1991): Inhibition of growth hormone secretion by activin A in human growth hormone-secreting tumour cells. Acta Endocrinol (Copenh) 124(6):666–671.

    Google Scholar 

  • Klausing K, Babin J, Karin M (1993): Differential growth hormone gene activation in pituitary cells is determined by promoter accessibility. In manuscript.

    Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992): Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature (Lond) 355(6359)446–449.

    Google Scholar 

  • Koenig RJ, Brent GA, Warne RL, Larsen PR, Moore DD (1987): Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone. Proc Natl Acad Sci USA 84(16):5670–5674.

    Google Scholar 

  • Koenig RJ, Warne RL, Brent GA, Harney JW, Larsen PR, Moore DD (1988): Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor. Proc Natl Acad Sci USA 85(14):5031–5035.

    Google Scholar 

  • Koenig RJ, Lazar MA, Hodin RA, Brent GA, Larsen PR, Chin WW, Moore DD (1989): Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature (Lond) 337(6208):659–661.

    Google Scholar 

  • Konzak KE, Moore DD (1992): Functional isoforms of Pit-1 generated by alternative messenger RNA splicing. Mol Endocrinol 6(2):241–247.

    Google Scholar 

  • Kristie TM, Sharp PA (1990): Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV a-trans-activator protein. Genes & Dev 4(12B):2383–2396.

    Google Scholar 

  • Lamberts SW (1988): The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev 9(4):417–436.

    Google Scholar 

  • Lai JS, Herr W (1992): Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc Natl Acad Sci USA 89(15):6958–6962.

    Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989): GT-Pase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature (Lond) 340(6236):692–696.

    Google Scholar 

  • Larsen PR, Harney JW, Moore DD (1986): Repression mediates cell-type-specific expression of the rat growth hormone gene. Proc Natl Acad Sci USA 83(21): 8283–8287.

    Google Scholar 

  • LeBowitz JH, Clerc RG, Brenowitz M, Sharp PA (1989): The Oct-2 protein binds cooperatively to adjacent octamer sites. Genes & Dev 3(10): 1625–1638.

    Google Scholar 

  • Lefevre C, Imagawa M, Dana S, Grindlay J, Bodner M, Karin M (1987): Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. EMBO J 6(4):971–981.

    Google Scholar 

  • Lemaigre FP, Courtois SJ, Durviaux SM, Egan CJ, LaFontaine DA, Rousseau GG (1989): Analysis of cis- and trans-acting elements in the hormone-sensitive human somatotropin gene promoter. J Steroid Biochem 34(l-6):79–83.

    Google Scholar 

  • Lemaigre FP, Lafontaine DA, Courtois SJ, Durviaux SM, Rousseau GG (1990): Spl can displace GHF-1 from its distal binding site and stimulate transcription from the growth hormone gene promoter. Mol Cell Biol 10(4):1811–1814.

    Google Scholar 

  • Leong DA, Lau SK, Sinha YN, Kaiser DL, Thorner MO (1985): Enumeration of lactotropes and somatotropes among male and female pituitary cells in culture: Evidence in favor of a mammosomatotrope subpopulation in the rat. Endocrinology 116:1371–1378.

    Google Scholar 

  • Lew AM, Elsholtz HP (1991): Cloning of the human cDNA for transcription factor Pit-1. Nucleic Acids Res 19(22):6329.

    Google Scholar 

  • Lew D, Brady H, Klausing K, Yaginuma K, Theill LE, Stauber C, Karin M, Mellon PL: GHF-1-promoter targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. Genes & Dev (in press).

    Google Scholar 

  • Li S, Crenshaw EB III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990): Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature (Lond) 347(6293):528–533.

    Google Scholar 

  • Lin C, Lin S-C, Chang C-P, Rosenfeld MG (1992a): Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 360:765–768.

    Google Scholar 

  • Lin HY, Wang XF, Ng EE, Weinberg RA, Lodish HF (1992b): Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell 68(4):775–785.

    Google Scholar 

  • Lira SA, Crenshaw EB III, Glass CK, Swanson LW, Rosenfeld MG (1988): Identification of rat growth hormone genomic sequences targeting pituitary expression in transgenic mice. Proc Natl Acad Sci USA 85(13):4755–4759.

    Google Scholar 

  • Lufkin T, Bancroft C (1987): Identification by cell fusion of gene sequences that interact with positive trans-acting factors. Science 237(4812):283–286.

    Google Scholar 

  • Lugo DI, Roberts JL, Pintar JE (1989): Analysis of proopiomelanocortin gene expression during prenatal development of the rat pituitary gland. Mol Endocrinol 3(8):1313–1324.

    Google Scholar 

  • Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR (1990): Two G protein oncogenes in human endocrine tumors. Science 249(4969):655–659.

    Google Scholar 

  • Mangalam HJ, Albert VR, Ingraham HA, Kapiloff M, Wilson L, Nelson C, Elsholtz H, Rosenfeld MG (1989): A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes & Dev 3(7):946–958.

    Google Scholar 

  • Martial JA, Seeburg PH, Guenzi D, Goodman HM, Baxter JD (1977): Regulation of growth hormone gene expression: Synergistic effects of thyroid and glucocorticoid hormones. Proc Natl Acad Sci USA 74(10):4293–4295.

    Google Scholar 

  • Martin KJ (1991): The interactions of transcription factors and their adaptors, coactivators and accessory proteins. Bioessays 13(10) 499–503.

    Google Scholar 

  • Mathews LS, Vale WW (1991): Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65(6):973–982.

    Google Scholar 

  • Mathews LS, Vale WW, Kintner CR (1992): Cloning of a second type of activin receptor and functional characterization in Xenopus embryos. Science 255(5052): 1702–1705.

    Google Scholar 

  • Massague J (1987): The TGF-β family of growth and differentiation factors. Cell 49(4):437–438.

    Google Scholar 

  • Mayo KE (1985): Proc Nad Acad Sci USA 82:63–67.

    Google Scholar 

  • Mayo KE (1992): Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Mol Endocrinol 6(10): 1734–1744.

    Google Scholar 

  • Mayo KE, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Evans RM (1988): Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 2(7):606–612.

    Google Scholar 

  • McCormick A, Brady H, Fukushima J, Karin M (1991): The pituitary-specific regulatory gene GHF1 contains a minimal cell type-specific promoter centered around its TATA box. Genes & Dev 5(8): 1490–1503.

    Google Scholar 

  • McCormick A, Brady H, Theill LE, Karin M (1990): Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and environmental cues. Nature (Lond) 345(6278):829–832.

    Google Scholar 

  • McCormick A, Wu D, Castrillo J-L, Dana S, Strobl J, Thompson EB, Karin M (1988): Extinction of growth hormone expression in somatic cell hybrids involves repression of the specific trans-activator GHF-1. Cell 55(2):379–389.

    Google Scholar 

  • McGinnis W, Krumlauf R (1992): Homeobox genes and axial patterning. Cell 68(2):283–302.

    Google Scholar 

  • Meijer D, Graus A, Kraay R, Langeveld A, Mulder MP, Grosveld G (1990): The octamer binding factor Oct6: cDNA cloning and expression in early embryonic cells. Nucleic Acids Res 18(24):7357–7365.

    Google Scholar 

  • Melton DA (1991): Pattern formation during animal development. Science 252(5003):234–241.

    Google Scholar 

  • Miller WL, Eberhardt NL (1983): Structure and evolution of the growth hormone gene family. Endocr Rev 4:97.

    Google Scholar 

  • Monuki ES, Weinmaster G, Kuhn R, Lemke G (1989): SCIP: A glial POU domain gene regulated by cyclic AMP. Neuron 3(6):783–793.

    Google Scholar 

  • Monuki ES, Kuhn R, Weinmaster G, Trapp BD, Lemke G (1990): Expression and activity of the POU transcription factor SCIP. Science 249(4974): 1300–1303.

    Google Scholar 

  • Morimoto N, Kawakami F, Makino S, Chihara K, Hasegawa M, Ibata Y (1988): Age-related changes in growth hormone releasing factor and somatostatin in the rat hypothalamus. Neuroendocrinology 47(5):459–464.

    Google Scholar 

  • Morita S, Fernandez Mejia C, Melmed S (1989): Retinoic acid selectively stimulates growth hormone secretion and messenger ribonucleic acid levels in rat pituitary cells. Endocrinology 124(5):2052–2056.

    Google Scholar 

  • Morris AE, Kloss B, McChesney RE, Bancroft C, Chasin LA (1992): An alternatively spliced Pit-1 isoform altered in its ability to trans-activate. Nucleic Acids Res 20(6):13SS-1361.

    Google Scholar 

  • Moses K (1991): The role of transcription factors in the developing Drosophila eye. Trends Genet 7(8):250–255.

    Google Scholar 

  • MĂĽller-ImmerglĂĽck MM, Schaffner W, Matthias P (1990): Transcription factor Oct-2A contains functionally redundant activating domains and works selectively from a promoter but not from a remote enhancer position in non-lymphoid (HeLa) cells. EMBO J 9(5): 1625–1634.

    Google Scholar 

  • Murray MB, Zilz ND, McCreary NL, MacDonald MJ, Towle HC (1988): Isolation and characterization of rat cDNA clones for two distinct thyroid hormone receptors. J Biol Chem 263(25): 12770–12777.

    Google Scholar 

  • Nelson C, Albert VR, Elsholtz HP, Lu LI-W, Rosenfeld MG (1988): Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 239:1400–1405.

    Google Scholar 

  • Nelson C, Crenshaw EB III, Franco R, Lira SA, Albert VR, Evans RM, Rosenfeld MG (1986): Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature (Lond) 322:557–562.

    Google Scholar 

  • Nevins JR (1991): Transcriptional activation by viral regulatory proteins. Trends Biochem Sci 16(11)435–439.

    Google Scholar 

  • Nogami H, Suzuki K, Enomoto H, Ishikawa H (1989): Studies on the development of growth hormone and prolactin cells in the rat pituitary gland by in situ hybridization. Cell Tissue Res 255(l):23–28.

    Google Scholar 

  • Norman MF, Lavin TN, Baxter JD, West BL (1989): The rat growth hormone gene contains multiple thyroid response elements. J Biol Chem 264:12063–12073.

    Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980): Mutations affecting segment number and polarity in Drosophila. Nature (Lond) 287:795–801.

    Google Scholar 

  • Nusslein-Volhard C, Frohnhofer HG, Lehmann R (1987): Determination of anteroposterior polarity in Drosophila. Science 238(4834): 1675–1681.

    Google Scholar 

  • Ohta K, Nobukuni Y, Mitsubchi H, Fujimoto S, Matsuo N, Inagaki H, Endo F, Matsuda I (1992): Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res Commun 189(2):851–855.

    Google Scholar 

  • Okazawa H, Okamoto K, Ishino F, Ishino-Kaneko T, Takeda S, Toyoda Y, Muramatsu M, Hamada H (1991): The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J 10(10):2997–3005.

    Google Scholar 

  • Oliver C, Eskay RL, Porter JC (1980): Developmental changes in brain TRH and in plasma and pituitary TSH and prolactin levels in the rat. Biol Neonate 37:145–152.

    Google Scholar 

  • Ono M, Takayama Y (1992): Structures of cDNAs encoding chum salmon pituitary-specific transcription factor, Pit-l/GHF-1. Gene 226:275–279.

    Google Scholar 

  • Otting G, Qian YQ, Muller M, Affolter M, Gehring W, Wuthrich K (1988): Secondary structure determination for the Antennapedia homeodomain by nuclear magnetic resonance and evidence for a helix-turn-helix motif. EMBO J 7(13):4305–4309.

    Google Scholar 

  • Owerbach D, Rutter W, Martial J, Baxter J (1980): Genes for growth hormone, chorionic somatomammotropin, and a growth hormone-like genes on chromosome 17 in humans. Science 209:289.

    Google Scholar 

  • Paek I, Axel R (1987): Glucocorticoids enhance stability of human growth hormone mRNA. Mol Cell Biol 7(4): 1496–1507.

    Google Scholar 

  • Paonessa G, Gounari F, Frank R, Cortese R (1988): Purification of a NFl-like DNA-binding protein from rat liver and cloning of the corresponding cDNA. EMBO J 7(10):3115–3123.

    Google Scholar 

  • Pan WT, Liu QR, Bancroft C (1990): Identification of a growth hormone gene promoter repressor element and its cognate double- and single-stranded DNA-binding proteins. J Biol Chem 265(12):7022–7028.

    Google Scholar 

  • Patel YC, Srikant CB (1986): Somatostatin mediation of adenohypophysial secretion. Annu Rev Physiol 48:551–567.

    Google Scholar 

  • Perkins LA, Perrimon N (1991): The molecular genetics of tail development in Drosophila melanogaster. in vivo 5(5):521–531.

    Google Scholar 

  • Peers B, Monget P, Nalda MA, Voz ML, Berwaer M, Belayew A, Martial JA (1991): Transcriptional induction of the human prolactin gene by cAMP requires two cis-acting elements and at least the pituitary-specific factor Pit-1. J Biol Chem 266(27): 18127–18134.

    Google Scholar 

  • Pfaffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, Van der Nat H, Van den Brande JL, Rosenfeld MG, Ingraham HA (1992): Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257(5073): 1118–1121.

    Google Scholar 

  • Pina B, Bruggemeier U, Beato M (1990): Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60(5):719–731.

    Google Scholar 

  • Pomerantz JL, Kristie TM, Sharp PA (1992): Recognition of the surface of a homeodomain protein. Genes & Dev 6(ll):2047–2057.

    Google Scholar 

  • Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE (1992): A mutation in the POU-domain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257(5073): 1115–1118.

    Google Scholar 

  • Reichlin S, ed. (1987): Somatostatin. Basic and Clinical Status, p. 1. Plenum, New York.

    Google Scholar 

  • Reid L (1990): From gradients to axes, from morphogenesis to differentiation. Cell 63(5):875–882.

    Google Scholar 

  • Rigaud G, Roux J, Pictet R, Grange T (1991): in vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67(5):977–986.

    Google Scholar 

  • Rivier J, Spiess J, Thorner M, Vale W (1982): Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature (Lond) 300:276–278.

    Google Scholar 

  • Robins DM, Paek I, Seeburg PH, Axel R (1982): Regulated expression of human growth hormone genes in mouse cells. Cell 29:623–631.

    Google Scholar 

  • Rosenfeld MG (1991): POU-domain transcription factors: Pou-er-ful developmental regulators. Genes & Dev 5(6):897–907.

    Google Scholar 

  • Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM (1990): A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature (Lond) 345(6277):686–692.

    Google Scholar 

  • Rousseau GG, Eliard PH, Barlow JW, Lemaigre FP, Lafontaine DA, De Nayer P, Economidis IV, Formstecher P, Idziorek T, Mathy Hartert M (1987): Approach to the molecular mechanisms of the modulation of growth hormone gene expression by glucocorticoid and thyroid hormones. J Steroid Biochem 27(1–3):149–158.

    Google Scholar 

  • Roux M, Bartke A, Dumont F, Dubois MP (1982): Immunohistological study of the anterior pituitary glandpars distalis and pars intermediain dwarf mice. Cell Tissue Res 223:415–420.

    Google Scholar 

  • Roy RJ, Gosselin P, Anzivino MJ, Moore DD, Guerin SL (1992): Binding of a nuclear protein to the rat growth hormone silencer element. Nucleic Acids Res 20(3):401–408.

    Google Scholar 

  • Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE (1990): Effects of human growth hormone in men over 60 years old. N Engl J Med 323(1): 1–6.

    Google Scholar 

  • Ruvkun G, Finney M (1991): Regulation of transcription and cell identity by POU domain proteins. Cell 64(3):475–478.

    Google Scholar 

  • Sap J, deMagistris L, Stunnenberg H, Vennstrom B (1990): A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J 9(3):887–896.

    Google Scholar 

  • Sawadogo M, Roeder RG (1985): Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175.

    Google Scholar 

  • Schaufele F, Cassill JA, West BL, Reudelhuber T (1990a): Resolution by diagonal gel mobility shift assays of multisubunit complexes binding to a functionally important element of the rat growth hormone gene promoter. J Biol Chem 265(24): 14592–14598.

    Google Scholar 

  • Schaufele F, West BL, Reudelhuber TL (1990b): Overlapping Pit-1 and Spl binding are both essential to full rat growth hormone gene promoter activity despite mutually exclusive Pit-1 and Psl binding. J Biol Chem 265(28):17189–17196.

    Google Scholar 

  • Schaufele F, West BL, Baxter JD (1992): Synergistic activation of the rat growth hormone promoter by Pit-1 and the thyroid hormone receptor. Mol Endocrinol 6(4):656–665.

    Google Scholar 

  • Schöler HR (1991): Octamania: The POU factors in murine development. Trends Genet 7(10): 323–329.

    Google Scholar 

  • Schonbrunn A, Koch BD (1987): Mechanisms by which somatostatin inhibits pituitary hormone release. In: Somatostatin. Basic and Clinical Status, Reichlin S, ed., p. 121. Plenum, New York.

    Google Scholar 

  • Schubert D, Kimura H, LaCorbiere M, Vaughan J, Karr D, Fischer WH (1990): Activin is a nerve cell survival molecule. Nature (Lond) 344(6269): 868–870.

    Google Scholar 

  • Schwind (1928): The development of the hypophysis cerebri of the albino rat. Am J Anat 41:295–319.

    Google Scholar 

  • Scifert H, Perrin M, Rivier J, Vale W (1985): Binding sites for growth hormone releasing factor on rat anterior pituitary cells. Nature (Lond) 313:487–489.

    Google Scholar 

  • Selby MJ, Barta A, Baxter JD, Bell GI, Eberhardt NL (1984): Analysis of a major human chorionic somatomammotropin gene. Evidence for two functional promoter elements. J Biol Chem 259:13131.

    Google Scholar 

  • Seo H (1985): In: The Pituitary Gland, pp. 57–82. Raven Press, New York.

    Google Scholar 

  • Setalo G, Nakane P (1976): Functional differentiation of the fetal anterior pituitary cells in the rat. Endocrinol Exp (Bratisl) 10:155.

    Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991): CREB: A Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252(5011): 1427–1430.

    Google Scholar 

  • Shupnik MA, Rosenzweig BA, Friend KE, Mason ME (1992): Thyrotropin (TSH)-releasing hormone-responsive elements in the rat TSH beta gene have distinct biological and nuclear protein-binding properties. Mol Endocrinol 6(l):43–52.

    Google Scholar 

  • Simmons DM, Voss JW, Ingraham HA, Holloway JM, Briode RS, Rosenfeld MG, Swanson LW (1990): Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes & Dev 4(5):695–711.

    Google Scholar 

  • Singh H, LeBowitz JH, Baldwin AS, Jr., Sharp PA (1988): Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell 52(3):415–423.

    Google Scholar 

  • Slabaugh MD, Lieberman ME, Rutledge JJ, Gorski J (1982): Ontogeny of growth hormone and prolactin gene expression in mice. Endocrinology 110:1489–1497.

    Google Scholar 

  • Slater EP, Rabenau O, Karin M, BAxter JD, Beato M (1985): Glucocorticoid receptor binding and activation of a heterologous promoter by dexamethasone by the first intron of the human growth hormone gene. Mol Cell Biol 5:2984–2992.

    Google Scholar 

  • Snell GD (1929): Dwarf, a new mendelian recessive character of the house mouse. Proc Natl Acad Sci USA 15:733–734.

    Google Scholar 

  • Spiess J, Rivier J, Vale W (1983): Characterization of rat hypothalamic growth hormone-releasing factor. Nature (Lond) 503:532–535.

    Google Scholar 

  • Spindler SR, Mellon SH, Baxter JD (1982): Growth hormone gene transcription is regulated by thyroid and glucocorticoid hormones in cultured rat pituitary tumor cells. J Biol Chem 257(19): 11627–11632.

    Google Scholar 

  • St. Johnston D, Nusslein Volhard C (1992): The origin of pattern and polarity in the Drosophila embryo. Cell 68(2):201–219.

    Google Scholar 

  • Steinfelder HJ, Radovick S, Mroczynski MA, Hauser P, McClaskey JH, Wein-traub BD, Wondisford FE (1992a): Role of a pituitary-specific transcription factor (pit-l/GHF-1) or a closely related protein in cAMP regulation of human thyrotropin-beta subunit gene expression. J Clin Invest 89(2):409–419.

    Google Scholar 

  • Steinfelder HJ, Radovick S, Wondisford FE (1992b): Hormonal regulation of the thyrotropin beta-subunit gene by phosphorylation of the pituitary-specific transcription factor Pit-1. Proc Natl Acad Sci USA 89(13):5942–5945.

    Google Scholar 

  • Stern S, Herr W (1991): The herpes simplex virus trans-activator VP16 recognizes the Oct-1 homeodomain: Evidence for a homeodomain recognition subdomain. Genes & Dev 5(12B):2555–2566.

    Google Scholar 

  • Stern S, Tanaka M, Herr W (1989): The Oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature (Lond) 341(6243):624–630.

    Google Scholar 

  • Sternberg PW, Horvitz HR (1991): Signal transduction during C. elegans vulval induction. Trends Genet 7(11–12):366–371.

    Google Scholar 

  • Strobl JS, van Eys GJ, Thompson EB (1989): Dexamethasone control of growth hormone mRNA levels in GH3 pituitary cells is cycloheximide-sensitive and primarily posttranscriptional. Mol Cell Endocrinol 66(l):71–82.

    Google Scholar 

  • Struthers RS, Gaddy-Kurten D, Vale WW (1992): Activin inhibits binding of transcription factor Pit-1 to the growth hormone promoter. Proc Natl Acad Sci USA 89:11451–11455.

    Google Scholar 

  • Struthers RS, Perrin MH, Vale W (1989): Nucleotide regulation of growth hormone-releasing factor binding to rat pituitary receptors. Endocrinology 124(l):24–29.

    Google Scholar 

  • Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR (1991): Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature (Lond) 350(6319):622–624.

    Google Scholar 

  • Sturm RA, Herr W (1988): The POU domain is a bipartite DNA-binding structure. Nature (Lond) 336(6199):601–604.

    Google Scholar 

  • SĂĽdhof TC, Russell DW, Goldstein JL, Brown MS (1985): Cassette of eight axons shared by genes for LDL receptor and EGF precursor. Science 228:893–895.

    Google Scholar 

  • Supowit SC, Ramsey T, Thompson EB (1992): Extinction of prolactin gene expression in somatic cell hybrids is correlated with the repression of the pituitary-specific trans-activator GHF-1/Pit-l. Mol Endocrinol 6(5):786–792.

    Google Scholar 

  • Talamantes F (1990): Structure and regulation of secretion of mouse placental lactogens. Prog Clin Biol Res 342:81–85.

    Google Scholar 

  • Tanaka M, Herr W (1990): Differential transcriptional activation by Oct-1 and Oct-2: Interdependent activation domains induce Oct-2 phosphorylation. Cell 60(3):375–386.

    Google Scholar 

  • Tanaka M, Lai J-S, Herr W (1992): Promoter-selective activation domains in Oct-1 and Oct-2 direct differential activation of an snRNA and mRNA promoter. Cell 68(4):755–767.

    Google Scholar 

  • Tansey WP, Catanzaro DF (1991): Spl and thyroid hormone receptor differentially activate expression of human growth hormone and chorionic somatomammotropin genes. J Biol Chem 266(15):9805–9813.

    Google Scholar 

  • Tasaka K, Kasahara K, Masumoto N, Mizuki J, Kurachi H, Miyake A, Tanizawa O (1992): Activin A increases cytosolic free calcium concentration in rat pituitary somatotropes. Biochem Biophys Res Commun 185(3):974–980.

    Google Scholar 

  • Tatsumi KI, Notomi T, Amino N, Miyai K (1992): Nucleotide sequence of the complementary DNA for human Pit-l/GHF-1. Biochim Biophys Acta 1129(2):231–234.

    Google Scholar 

  • Thayer MJ, Tapscott SJ, Davis RL, Wright WE, Lassar AB, Weintraub H (1989): Positive autoregulation of the myogenic determination gene MyoDl. Cell 58(2):241–248.

    Google Scholar 

  • Theill LE, Castrillo J-L, Wu D, Karin M (1989): Dissection of functional domains of the pituitary-specific transcription factor GHF-1. Nature (Lond) 342(6252):945–948.

    Google Scholar 

  • Theill LE, Hattori K, Lazzaro D, Castrillo J-L, Karin M (1992): Differential splicing of the GHF1 primary transcript gives rise to two functionally distinct homeodomain proteins. EMBO J 11(6):2261–2269.

    Google Scholar 

  • Thompson CC, Evans RM (1989): Trans-activation by thyroid hormone receptors: Functional parallels with steroid hormone receptors. Proc Natl Acad Sci USA 86(10):3494–3498.

    Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990): Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63(3):485–493.

    Google Scholar 

  • Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M (1992): COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 12(10):4666–4676.

    Google Scholar 

  • Treacy MN, He X, Rosenfeld MG (1991a): I-POU: A POU-domain protein that inhibits neuron-specific gene activation Nature (Lond) 350(6319):577–584.

    Google Scholar 

  • Treacy MN, Ryan F, Martin F (1991b): Functional glucocorticoid inducible enhancer activity in the 5′-flanking sequences of the rat growth hormone gene. J Steroid Biochem Mol Biol 38(1): 1–15.

    Google Scholar 

  • Treacy MN, Neilson LI, Turner EE, He X, Rosenfeld MG (1992): Twin of I-POU: A two amino acid difference in the I-POU homeodomain distinguishes an activator from an inhibitor of transcription. Cell 68(3):491–505.

    Google Scholar 

  • Tripputi P, Guerin SL, Moore DD (1988): Two mechanisms for the extinction of gene expression in hybrid cells. Science 241(4870): 1205–1207.

    Google Scholar 

  • Tullius TD, Dombroski BA (1986): Hydroxyl radical “footprinting:” High resolution information about DNA-protein contacts and the application to 1 repressor and Crp protein. Proc Natl Acad Sci USA 83:5469–5473.

    Google Scholar 

  • Umesono K, Giguere V, Glass CK, Rosenfeld MG, Evans RM (1988): Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature (Lond) 336(6196):262–265.

    Google Scholar 

  • Verrijzer CP, van Oosterhout JA, van der Vliet PC (1992a): The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol 12(2):542–551.

    Google Scholar 

  • Verrijzer CP, Strating M, Mul YM, van der Vliet PC (1992b): POU domain transcription factors from different subclasses stimulate adenovirus DNA replication. Nuc Acids Res 20(23):6369–6375.

    Google Scholar 

  • Verrijzer CP, Kal AJ, van der Vliet PC (1990a): The DNA binding domain (POU domain) of transcription factor oct-1 suffices for stimulation of DNA replication. EMBO J 9(6): 1883–1888.

    Google Scholar 

  • Verrijzer CP, Kal AJ, van der Vliet PC (1990b): The oct-1 homeodomain contacts only part of the octamer sequence and full oct-1 DNA-binding activity requires the POU-specific domain. Genes & Dev 4(11): 1964–1974.

    Google Scholar 

  • Verrijzer CP, van Oosterhout JA, van Weperen WW, van der Vliet PC (1991): POU proteins bend DNA via the POU-specific domain. EMBO J 10(10):3007–3014.

    Google Scholar 

  • Verrijzer CP, van Oosterhout JA, van der Vliet PC (1992): The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol 12(2):542–551.

    Google Scholar 

  • von Hippel PH, Berg OG (1986): On the specificity of DNA-protein interactions. Proc Natl Acad Sci USA 83:1608–1612.

    Google Scholar 

  • Voss JW, Wilson L, Rosenfeld MG (1991): POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter. Genes & Dev 5(7): 1309–1320.

    Google Scholar 

  • Walker WH, Fitzpatrick SL, Barrera-Saldaña HA, ResĂ©ndez-PĂ©rez D, Saunders GF (1991): The human placental lactogen genes: Structure, function, evolution and transcriptional regulation. Endocr Rev 12(4):316–328.

    Google Scholar 

  • Watanabe YG (1982): Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophresis in vitro. Cell Tissue Res 227:257–266.

    Google Scholar 

  • Watanabe YG, Daikoku S (1979): An immunohistochemical study on the cytogenesis of adenohypophysial cells in fetal rats. Dev Biol 68:559–567.

    Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al. (1991): The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251(4995):761–766.

    Google Scholar 

  • West BL, Catanzaro DF, Mello SH, Cattini PA, Baxter JD, Reudelhuber TL (1987): Interaction of a tissue-specific factor with an essential rat growth hormone gene promoter element. Mol Cell Biol 7(3): 1193–1197.

    Google Scholar 

  • Wheeler MD, Styne DM (1988): The nonhuman primate as a model of growth hormone physiology in the human being. Endocr Rev 9(2):213–246.

    Google Scholar 

  • Williams GR, Franklyn JA, Sheppard MC (1991): Thyroid hormone and glucocorticoid regulation of receptor and target gene mRNAs in pituitary cells. Mol Cell Endocrinol 80(1–3): 127–138.

    Google Scholar 

  • Wilson DB, Wyatt DP (1986): Ultrastructural immunocytochemistry of somatotrophs and mammotrophs in embryos of the dwarf mutant mouse. Anat Rec 215:282–287.

    Google Scholar 

  • Wong EA, Ferrin NH, Silsby JL, El Halawani ME (1992): Complementary cDNA cloning and expression of Pitl/GHF-1 from the domestic turkey. DNA Cell Biol 11:651–660.

    Google Scholar 

  • Yaffe B, Samuels HH (1984): Hormonal regulation of the growth hormone gene. J Biol Chem 259(10):6284–6291.

    Google Scholar 

  • Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Scino S (1992): Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci USA 89(1):251–255.

    Google Scholar 

  • Yashiro T, Arai M, Miyashita E, Yamashita K, Suzuki T (1988): Fine-structural and immunohistochemical study of anterior pituitary cells of Snell dwarf mice. Cell Tissue Res 251(2):249–255.

    Google Scholar 

  • Ye Z-S, Samuels HH (1987): Cell- and sequence-specific binding of nuclear proteins to 5′-flanking DNA of the rat growth hormone gene. J Biol Chem 262(13):6313–6317.

    Google Scholar 

  • Ye Z-S, Forman BM, Aranda A, Pascual A, Park H-Y, Casanova J, Samuals HH (1988): Rat growth hormone gene expression: Both cell-specific and thyroid hormone response elements are required for thyroid hormone regulation. J Biol Chem 263(16):7821–7829.

    Google Scholar 

  • Ying SY (1988): Inhibins, activins, and follistatins: Gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 9(2):267–293.

    Google Scholar 

  • Zeytin FN, Gick GG, Brazeau P, Ling N, McLaughlin M, Bancroft C (1984): Growth hormone (GH)-releasing factor does not regulate GH release or GH mRNA levels in GH3 cells. Endocrinology 114(6):2054–2059.

    Google Scholar 

  • Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M (1992): Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature (Lond) 355(6359):441–446.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Boston

About this chapter

Cite this chapter

Theill, L.E. (1993). Transcriptional Control of Pituitary Gene Expression. In: Karin, M. (eds) Gene Expression. Progress in Gene Expression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6811-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6811-3_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6813-7

  • Online ISBN: 978-1-4684-6811-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics