Circadian Rhythmicity of Man Under the Influence of Weak Electromagnetic Fields

  • Rütger A. Wever
Part of the Circadian Factors in Human Health and Performance book series (CFHH)


Circadian rhythmicity is of endogenous origin, that is, it is generated within every organism without needing the input of day-night stimuli. Its period is usually close to but not precisely 24 hr. In humans, the free-running period is typically about 25 hr. In fact, in most experiments all rhythms run in synchrony (“internally synchronized”). In a minority of experiments (i.e., 52 experiments to date), the period of about 25 hr is present only in some physiological rhythms (e.g., deep body temperature), whereas the sleep-wake rhythm and other rhythms run with considerably deviating periods (i.e., between 12 and 65 hr) and the rhythms are described as “internally desynchronized.”


Melatonin Secretion Field Alternation Temperature Rhythm Constant Environmental Condition Deep Body Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bawin, S.M., Adey, W.R. (1976): Sensitivity of calcium binding in cerebral tissue to weak environmental fields oscillating at low frequency. Proc Natl Acad Sci USA73: 1999–2003CrossRefGoogle Scholar
  2. Eskin, A. (1971): Some properties of the system controlling activity rhythm of sparrow. In: Biochronometry, Menaker, M., ed. Washington DC: National Academy of SciencesGoogle Scholar
  3. Gmelin, L. (1963): Handbuch der Anorganischen Chemie Google Scholar
  4. Jacobi, E. (1979): Pathophysiologie der Thrombozytenadhäsivität. Bern: Verlag Hans HuberGoogle Scholar
  5. Lewy, A.J., Wehr, T.A., Goodwin, F.K., Newsome, D.A., Markey, S.P. (1980): Light suppresses melatonin secretion in humans. Science210: 1267–1269CrossRefGoogle Scholar
  6. Schulten, K. (1982): Magnetic field effects in chemistry and biology. Adv Solid State Phys22: 61–83CrossRefGoogle Scholar
  7. Wever, R. (1964): Zum Mechanismus der biologischen 24-Stunden-Periodik. III. Mitteilung: Anwendung der Modell-Gleichung. Kybernetik2: 127–144CrossRefGoogle Scholar
  8. Weyer, R. (1967): Über die Beeinflussung der circadianen Periodik des Menschen durch schwache elektromagnetische Felder. Z Vergl Physiol56: 111–128Google Scholar
  9. Weyer, R. (1968a): Einfluss schwacher elektro-magnetischer Felder auf die circadiane Periodik des Menschen. Naturwissenschaften55: 29–32CrossRefGoogle Scholar
  10. Weyer, R. (1968b): Gesetzmässigkeiten der circadianen Periodik des Menschen, geprüft an der Wirkung eines schwachen elektrischen Wechselfeldes. Pflügers Arch302: 97–122CrossRefGoogle Scholar
  11. Weyer, R. (1969): Untersuchungen zur circadianen Periodik des Menschen mit besonderer Berücksichtigung des Einflusses schwacher elektrischer Wechselfelder. Bundesminst Wiss Forschg ForschungsberW69–31Google Scholar
  12. Weyer, R. (1971): Die circadiane Periodik des Menschen als Indikator für die biologische Wirkung elektromagnetischer Felder. Z Physik Med2: 439–471Google Scholar
  13. Weyer, R. (1973): Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeor17: 227–232CrossRefGoogle Scholar
  14. Weyer, R. (1974): ELF-effects on human circadian rhythms. in: ELF and VLF Electromagnetic Field Effects, Persinger, M.A., ed. New York-London: Plenum PressGoogle Scholar
  15. Weyer, R. (1975): The circadian multi-oscillator system of man. Int J Chronobiol3: 19–55Google Scholar
  16. Weyer, R. (1977): Effects of low-level, low-frequency fields on human circadian rhythms. In : Brain Interactions with Weak Electric and Magnetic Fields, Adey, W.R., Bawin, S.M., eds. Neurosciences Res. Progr., Bull. 15/1:25–27, 39–45Google Scholar
  17. Weyer, R.A. (1979): The Circadian System of Man. New York-Heidelberg-Berlin: Springer-VerlagGoogle Scholar
  18. Weyer, R.A. (1984): Towards a mathematical model of circadian rhythmicity. In: Mathematical Models of the Circadian Sleep-Wake Cycle, Moore-Ede, M.C., Czeisler, C.A., eds. New York: Raven PressGoogle Scholar
  19. Weyer, R.A. (1985a): Use of light to treat jet lag: Differential effects of normal and bright artificial light on human circadian rhythms. In: The Medical and Biological Effects of Light. Ann NYAcad Sci453: 282–304Google Scholar
  20. Weyer, R.A. (1985b): The electromagnetic environment and the circadian rhythms of human subjects. In: Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields, Grandolfo, M., Michaelson, S.M., Rindi, A., eds. New York-London: Plenum PressGoogle Scholar
  21. Weyer, R.A. (1986): Characteristics of circadian rhythms in human functions. J Neural Transm21 (Suppl): 323–373Google Scholar
  22. Weyer, R.A. (1987): Mathematical models of circadian one- and multi-oscillator systems. In: Some Mathematical Questions in Biology: Circadian Rhythms, Carpenter, G.A., ed. Providence, Rhode Island• The Amer Math SocGoogle Scholar
  23. Weyer, R.A. (1988): Order and disorder in human circadian rhythmicity: Possible relations to mental disorders. In: Biological Rhythms and Mental Disorders, Kupfer, D.J., Monk, T.H., Barchas, J.D., eds. New York: Guilford PressGoogle Scholar
  24. Weyer, R.A. (1989): Light effects on human circadian rhythms: A review of recent Andechs experiments. J Biol Rhythms4: 166–185Google Scholar
  25. Weyer, R.A., Polasek, J., Wildgruber, C.M. (1983): Bright light affects human circadian rhythms. Pflügers Arch396: 85–8CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Rütger A. Wever

There are no affiliations available

Personalised recommendations