Skip to main content

Magnetoreception in Rodents: Involvement of the Eyes and the Pineal Organ may be Evidence for a Chronobiological Substrate

  • Chapter

Part of the book series: Circadian Factors in Human Health and Performance ((CFHH))

Abstract

For centuries the idea that animals respond to ambient magnetic fields (MF) has been restricted largely to speculations based on rare observations in the field. However, in the past few decades a slow but gradual increase in scientific interest has begun to delineate some aspects of magnetoreception in vertebrates (Adey, 1981; Gould, 1983; Kirschvink, 1989). The ultimate goal of these studies has been, and continues to be, the identification of physiological and anatomical components of a magnetoreceptor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W.R. (1981): Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–513

    Google Scholar 

  • Beason, R.C., Nichols, J.E. (1984): Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309: 151–153

    Article  Google Scholar 

  • Blackman, C.F. (1988): Stimulation of brain tissue in vitro by extremely low frequency, low intensity, sinusoidal electromagnetic fields. In: Electromagnetic Fields and Neurobehavioral Function, O’Connor, M.E., Lovely, R.H., eds. New York: Alan R. Liss

    Google Scholar 

  • Brainard, G.C., Richardson, B.A., King, T.S., Matthews, S.A., Reiter, R.J. (1983): The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: A dose-response relationship. Endocrinology 113: 293–296

    Article  Google Scholar 

  • Brown, F.A., Scow, K.M. (1978): Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9: 137–145

    Article  Google Scholar 

  • Creel, D. (1980): Inappropriate use of albino animals as models in research. Pharmacol Biochem Behav 12: 969–977

    Article  Google Scholar 

  • Deguchi, T., Axelrod, J. (1972): Sensitive assay for serotonin N-acetyltransferase activity in rat pineal. Analyt Biochem 50: 174–179

    Article  Google Scholar 

  • Dräger, U.C. (1985): Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci (USA) 82: 6716–6720

    Article  Google Scholar 

  • Dräger, U.C. (1986): Albinism and visual pathways. N Engl J Med 314: 1636–1638

    Article  Google Scholar 

  • Frucht, Y., Vidauri, J., Melamed, E. (1982): Light activation of dopaminergic neurons in rat retina is mediated through photoreceptors. Brain Res 249: 153–156

    Article  Google Scholar 

  • Gould, J.L. (1983): Magnetic field sensitivity in animals Annu Rev Physiol 46: 585–598

    Article  Google Scholar 

  • Hoogland, P.V., van der Krans, A., Koole, F.D., Groenewegen, H.J. (1985): A direct projection from the nucleus oculomotorius to the retina in rats. Neurosci Lett 56: 323–328

    Article  Google Scholar 

  • Kamp, C.W. (1985): The dopamine system of the retina. In: Retinal Transmitters and Modulators: Models for the Brain, vol. 2, Morgan, WW, ed. Boca Raton: CRC Press

    Google Scholar 

  • Kirschvink, J.L. (1989): Magnetite biomineralization and geomagnetic sensitivity in higher animals: An update and recommendations for future study. Bioelectromagnetics 10: 239–259

    Article  Google Scholar 

  • Lanum, J. (1978): The damaging effects of light on the retina. Emperical findings, theoretical and practical implications. Sury Opthalmol 22: 221–249

    Article  Google Scholar 

  • Larsen, J.N.B., Moller, M. (1987): The presence of retinopetal fibres in the optic nerve of the Mohgolian gerbil (Meriones unguiculatus): A horseradish peroxidase in vitro study. Exp Eye Res 45: 763–768

    Article  Google Scholar 

  • Leask, M.J.M. (1977): A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267: 144–145

    Article  Google Scholar 

  • Lerchl, A., Nonaka, K.O., Stokkan, K.-A., Reiter, R.J. (1990): Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields. Biochem Biophys Res Commun 169: 102–108

    Article  Google Scholar 

  • Leucht, T. (1990): Interactions of light and gravity reception with magnetic fields in Xenopus laevis. J Exp Biol 148: 325–334

    Google Scholar 

  • Long, K.O., Fischer, S.K. (1983): The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. J Comp Neurol 221: 329–340

    Article  Google Scholar 

  • Lynch, H.J., Deng, M.H., Wurtman, R.J. (1984): Light intensities required to suppress nocturnal melatonin secretion in albino and pigmented rats. Life Sci 35: 841–847

    Article  Google Scholar 

  • Mather, J.G. (1985): Magnetoreception and the search for magnetic material in rodents. In: Magnetite Biomineralization and Magnetoreception in Organisms. Kirschvink, J.L., Jones, D.S., MacFadden, B.J., eds. New York: Plenum Press

    Google Scholar 

  • Mather, J.G., Baker, R.R., (1981): Magnetic sense of direction in woodmice for route-based navigation. Nature 291: 152–155

    Article  Google Scholar 

  • Matthews, H.R., Murphy, R.L.W., Fain, G.L., Lamb, T.D. (1988): Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334: 67–69

    Article  Google Scholar 

  • Mullen, R.J., LaVail, M.M. (1976): Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras. Science 192: 799–801

    Article  Google Scholar 

  • Muller, T.H., Unsicker, K. (1981): High-performance liquid chromatography with electrochemical detection as a highly efficient tool for studying catecholaminergic systems. I. Quantification of noradrenaline, adrenaline and dopamine in cultured adrenal medullary cells. J Neurosci Meth 4: 39–52

    Article  Google Scholar 

  • Olcese, J.M. (1990): The neurobiology of magnetic field detection in rodents. Prog Neurobiol 35: 325–330

    Article  Google Scholar 

  • Olcese, J., Hurlbut, E. (1989): Comparative studies on the retinal dopamine response to altered magnetic fields in rodents. Brain Res 498: 145–148

    Article  Google Scholar 

  • Olcese, J., Reuss, S. (1986): Magnetic field effects on pineal gland melatonin synthesis: Comparative studies on albino and pigmented rodents. Brain Res 369: 365–369

    Article  Google Scholar 

  • Olcese, J., Ruess, S., Stehle, S., Steinlechner, S., Vollrath, L. (1987): The mammalian pineal and retinae as geomagnetic field detectors. In: Fundamentals and Clinics in Pineal Research, Trentini, G.P., DeGaetani, C., Pevet, P., eds. New York: Raven Press

    Google Scholar 

  • Olcese, J., Reuss, S., Stehle, S., Steinlechner, S., Vollrath, L. (1988): Responses of the mammalian retina to experimental alteration of the ambient magnetic field. Brain Res 448: 325–330

    Article  Google Scholar 

  • Olcese, J., Reuss, S., Vollrath, L. (1985): Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333: 382–384

    Article  Google Scholar 

  • Osborne, N.N., Patel, S. (1985): The presence of dopamine-ß-hydroxylase-like enzyme in the vertebrate retina. Neurochem Int 7: 51–56

    Article  Google Scholar 

  • Raybourn, M.S. (1983): The effects of direct-current magnetic fields on turtle retinas in vitro. Science 220: 715–717

    Article  Google Scholar 

  • Reppert, S.M., Weaver, D.R., Rivkees, S.C., Stopa, E.G. (1988): Putative melatonin receptors in a human biological clock. Science 242: 78–81

    Article  Google Scholar 

  • Reuss, S., Olcese, J. (1986): Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci Lett 64: 97–101

    Article  Google Scholar 

  • Reuss, S., Semm, P., Vollrath, L. (1983): Different types of magnetically sensitive cells in the rat pineal gland. Neurosci Lett 40: 23–26

    Article  Google Scholar 

  • Rudolph, K., Wirz-Justice, A., Kräuchi, K., Feer, H. (1988): Static magnetic fields decrease nocturnal pineal cAMP in the rat. Brain Res 446: 159–160

    Article  Google Scholar 

  • Schulten, K., Windemuth, A. (1986): Model for a physiological magnetic compass. In: Biophysical Effects of Steady Magnetic Fields, Maret, G., Kiepenheuer, J., Boccara, N., eds. Berlin: Springer-Verlag

    Google Scholar 

  • Semm, P., Nohr, D., Demaine, C., Wiltschko, W. (1984): Neural basis of the magnetic compass: Interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol 155A: 283–288

    Article  Google Scholar 

  • Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608

    Article  Google Scholar 

  • Skiles, D.D. (1985): The geomagnetic field its nature, history, and biological relevance. In: Magnetite Biomineralization and Magnetoreception in Organisms, Kirschvink, J.L., Jones, D.S., MacFadden, B.J., eds. New York: Plenum Press

    Google Scholar 

  • Stehle, J., Reuss, S., Schröder, H., Henschel, M., Vollrath, L. (1988): Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil role of pigmentation and sex. Physiol Behav 44: 91–94

    Article  Google Scholar 

  • Stutz, A.M. (1971): Effects of weak magnetic fields on gerbil spontaneous activity. Ann NY Acad Sci 188: 312–323

    Article  Google Scholar 

  • Townes-Anderson, E., Dacheux, R.F., Raviola, E. (1988): Rod photoreceptors dissociated from the adult rabbit retina. J Neurosci 8: 320–331

    Google Scholar 

  • Vanecek, J. (1988): Melatonin binding sites. J Neurochem 51: 1436–1440

    Article  Google Scholar 

  • Vollrath, L. (1981): The Pineal Organ (Handbuch der Mikroskopischen Anatomie des Menschen, vol VI/7). Berlin: Springer-Verlag

    Book  Google Scholar 

  • Weaver, D.R., Namboodiri, A., Reppert, S.M. (1988): Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett 228: 123–127

    Article  Google Scholar 

  • Welker, H.A., Semm, P., Willig, R.P., Commentz, J.C., Wiltschko, W., Vollrath, L. (1983): Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–432

    Article  Google Scholar 

  • Wiechmann, A.F. (1986): Melatonin: Parallels in pineal gland and retina. Exp Eye Res 42: 507–527

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Olcese, J.M. (1992). Magnetoreception in Rodents: Involvement of the Eyes and the Pineal Organ may be Evidence for a Chronobiological Substrate. In: Moore-Ede, M.C., Campbell, S.S., Reiter, R.J. (eds) Electromagnetic Fields and Circadian Rhythmicity. Circadian Factors in Human Health and Performance. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6799-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6799-4_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6801-4

  • Online ISBN: 978-1-4684-6799-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics