Skip to main content

Head Trauma Model Systems

  • Chapter
  • First Online:
  • 32 Accesses

Part of the book series: Advances in Neuroprotection ((AN,volume 22))

Abstract

The Latin origin of the term concussion, concutere, commonly referred to a violent shaking or agitation, as in an earthquake. The first recorded use of the term in a clinical context dates from the sixteenth century, during which concussion or commotio cerebri was used to designate the effects of injuries to the brain without fracture to the skull (Johnson, 1634). Quite appropriately, concussion has subsequently been applied collectively to the wide range of biomechanical, physiologic, and behavioral events that accompany the application of brief mechanical forces to the central nervous system. The origins of these impacts are diverse and may include such occurrences as motor vehicle and sporting accidents, falls, and attacks with blunt instruments. Thus, the physical (i.e., biomechanical) characteristics of various clinical manifestations of concussion may vary widely. This variability in the biomechanical events present in human head injury has, no doubt, contributed to the wide variety of animal models used to study this phenomenon as well as to the continuing study of the biomechanical events necessary and/or sufficient to produce concussion. However, it is generally agreed that the duration of mechanical loading producing concussion does not exceed about 200 msec, since longer durations produce significantly different effects associated with crushing of the skull by static loading. In contrast to the brief biomechanical events associated with concussive injury, static loading does not produce unconsciousness (Ommaya, 1982; Povlishock, 1989; Russell and Schiller, 1949).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akert K, Koella WP, Hess R Jr (1952): Sleep produced by electrical stimulation of the thalamus. Am J Physiol 168: 260–267

    Article  CAS  Google Scholar 

  • Amatruda TT III, Black DA, McKenna TM, McCarley RW, Hobson JA (1975): Sleep cycle control and cholinergic mechanisms: Differential effects of carbechol injections at pontine brain stem sites. Brain Res 98: 501–515

    Article  CAS  Google Scholar 

  • Anderson TE (1982): A controlled pneumatic technique for experimental spinal cord contusion. J Neurosci Meth 6: 327–333

    Article  CAS  Google Scholar 

  • Becker DP, Miller JD, Sweet RC, Young HF, Sullivan H, Griffith RL (1979): Head injury management. In: Neural Trauma, Popp AJ, et al., eds. New York: Raven Press, pp 313–328

    Google Scholar 

  • Bederson JB, Bartkowski HM, Moon K, et al. (1986): Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema in a rat model. J Neurosurg 64: 795–802

    Article  CAS  Google Scholar 

  • Ben-Ari Y, Rich E, Danielle E, Tremblay E, Charton G (1980): Epileptic state induced by systematic administration of kainic acid: Metabolic mapping with the aid of deoxyglucose method. CR 290 (16)

    Google Scholar 

  • Blomqvist P, Wieloc T (1985): Ischemic brain damage in rats following cardiac arrest using a long-term recovery model. J Cereb Blood Flow Metab 5: 420–431

    Article  CAS  Google Scholar 

  • Bouma GJ, Muizelar JP, Choi SC, Newlon PG, Young HF (1991): Cerebral circulation and metabolism after severe traumatic brain injury: The elusive role of ischemia. J Neurosurg 75: 685–693

    Article  CAS  Google Scholar 

  • Bruce DA, Langfitt TW, Miller JD, et al. (1973): Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients. J Neurosurg 38: 131–144

    Article  CAS  Google Scholar 

  • Busto R, Dietrich W, Globus MYT, Valdes I, Scheinberg P, Ginsberg MD (1987): Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738

    Article  CAS  Google Scholar 

  • Chou CL, Jenkins LW, Hayes RL, et al.: Regional cerebral blood flow following moderate traumatic brain injury in the rat. J Neurosurg In preparation

    Google Scholar 

  • Collins RC, Kennedy C, Sokoloff L, Plum F (1976): Metabolic anatomy of focal motor seizures. Arch Neurol 33: 536–542

    Article  CAS  Google Scholar 

  • Committee to Study Head Injury Nomenclature Report (1966): Clin Neurosurg 12: 386–387

    Google Scholar 

  • Cortez SC, McIntosh TK, Noble LJ (1989): Experimental fluid percussion brain injury: Vascular disruption and neuronal and glial alterations. Brain Res 482: 271–282

    Article  CAS  Google Scholar 

  • Denny-Brown D, Russell WR (1941): Experimental cerebral concussion. Brain 64: 93–164

    Article  Google Scholar 

  • DeWitt DS, Hayes RL, Lyeth BG, Yuan XQ, Prough DS (1988): Effects of traumatic brain injury on cerebral blood flow and metabolism: Autoradiographic studies. Anes Rev 15: 31–32

    Google Scholar 

  • Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987): A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67: 110–119

    Article  CAS  Google Scholar 

  • Dixon CE, Lighthall JW, Anderson TE (1988): A physiologic, histopathologic, and cineradiographic characterization of a new fluid percussion model of experimental brain injury in the rat. J Neurotrauma 5 (2): 91–104

    Article  CAS  Google Scholar 

  • Dixon CE, Hamm RJ, Clifton GL, Hayes RL (1991): Muscarinic receptor blockade reveals chronic changes in cholinergic function in two models of traumatic brain injury. Proceedings of the Satellite Meeting of Brain 91, the Role of Neurotransmitters in Brain Injury, p 41

    Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991): A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Meth 39: 253–262

    Article  CAS  Google Scholar 

  • Dubuisson D, Dennis SG (1977): The formalin test: A quantitative study of analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain I: 161–174

    Article  Google Scholar 

  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981): Responses to cortical injury. I. Methodology and local effects of contusion in the rat. Brain Res 211: 67–77

    Article  CAS  Google Scholar 

  • Fieschi C, Sakurada O, Sokoloff L (1978): Local cerebral glucose utilization during resolution of embolic experimental ischemia. Adv Neurol 20: 223–229

    CAS  PubMed  Google Scholar 

  • Gennarelli TA, Segawa H, Wald U, Czernicki Z, Marsh K, Thompson C (1982): Physiological response to angular acceleration of the head. In: Head Injury: Basic and Clinical Aspects, Grossman RG, Gildenberg PL, eds. New York: Raven Press, pp 129–140

    Google Scholar 

  • Gennarelli TA, Thibault LE (1985): Biological models of head injury. In: Central Nervous System Trauma Status Report, 1985, Becker DP, Povlishock JT, eds. Bethesda, Maryland: National Institute of Neurological and Communicative Disorders and Stroke, pp 391–404

    Google Scholar 

  • Goldstein FJ, Malseed RT (1979): Evaluation of narcotic analgesic activity using a cat tail flick procedure J Pharmacol Meth 2: 333–338

    Article  CAS  Google Scholar 

  • Govons SR, Govons RB, VanHuss WD, et al. (1972): Brain concussion in the rat. Exp Neurol 34: 121–128

    Article  CAS  Google Scholar 

  • Gurdjian ES, Lissner HR, Webster JE, et al. (1954): Studies on experimental concussion: Relation of physiologic effect to time duration of intracranial pressure increase at impact. Neurology 4: 674–681

    Article  CAS  Google Scholar 

  • Guthkelch AN (1980): Post-traumatic amnesia, post-concussional symptoms and accident neurosis. Eur Neurol 19: 91–102

    Article  CAS  Google Scholar 

  • Hayes RL, Price DP, Dubner R (1979): Behavioral and physiological studies of sensory coding and modulation of trigeminal nonciceptive input Adv Pain Res Ther 3: 219–243

    Google Scholar 

  • Hayes RL, Lewelt W, Yeatts ML, et al. (1983): Metabolic behavioral and electrophysiological correlates of experimental brain injury in the cat. J Cereb Blood Flow Metab 3 (Suppl 1): S39 - S40

    Google Scholar 

  • Hayes RL, Stalhammer DA, Galinat BJ, et al. (1987): A new model of concussive brain injury in the cat produced by extradural fluid volume loading. II. Physiological and neuropathological observations. Brain Injury 1: 93–112

    Article  CAS  Google Scholar 

  • Ishige N, Pitts LH, Hashimoto T, et al. (1987): The effect of hypoxia on traumatic brain injury in rats. Part I. Changes in neurological function, electroencephalogram, and histopathology. Neurosurgery 20: 848–853

    Article  CAS  Google Scholar 

  • Jenkins LW, Lyeth BG, Hayes RL (1989a): The role of agonist-receptor interactions in the pathophysiology of mild and moderate head injury In: Contemporary Issues in Neurological Surgery: 1. Mild to Moderate Brain Injury Hoff JT, Anderson TE, Cole T, eds. Boston: Blackwell Scientific Publications, pp 47–61

    Google Scholar 

  • Jenkins LW, Moszynski K, Lyeth BG, Lewelt W, DeWitt DS, Allen A, Dixon CE, Povlishock JT, Majewski TJ, Clifton GL, Young HF, Becker DP, Hayes RL (1989b): Increased vulnerability of the mildly traumatized brain to cerebral ischemia: The use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res 477: 211–224

    Article  CAS  Google Scholar 

  • Jenkins LW, Lyeth BG, Lewelt W, Moszynski HF, Young HF, Clifton GL, Hayes RL (1989c): Muscarinic and NMDA receptor blockade attenuates increased post-traumatic vulnerability to cerebral ischemia. J Cereb Blood Flow Metab 9: S750

    Google Scholar 

  • Jiang JY, Lyeth BG, Clifton GL, Jenkins LW, Hamm RJ, Hayes RL (1991): Relationship between body and brain temperature in traumatically brain injured rodents. J Neurosurg 74: 492–496

    Article  CAS  Google Scholar 

  • Johnson T (1634): The Works of the Famous Chirurgion Ambrose Parry, Cotes T, Young R, eds. London, pp 1173–1193

    Google Scholar 

  • Katayama Y, Becker DP, Tamura T, Hovda DA (1990): Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73: 889–900

    Article  CAS  Google Scholar 

  • Kearney PA, Ridella SA, Viano DC, Anderson TW (1988): Interaction of contact velocity and cord compression in determining the severity of spinal cord injury. J Neurotrauma 5 (3): 187–208

    Article  CAS  Google Scholar 

  • Kling JW, Riggs LA, eds (1971): Woodworth and Schlosberg’s Experimental Psychology, 3rd ed. New York: Holt, Rinehart and Winston

    Google Scholar 

  • Lewelt W, Jenkins LW, Miller JD (1980): Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain. J Neurosurg 53: 500–511

    Article  CAS  Google Scholar 

  • Lighthall JW (1988): Controlled cortical impact: A new experimental brain injury model. JNeurotrauma 5 (1): 1–15

    Article  CAS  Google Scholar 

  • Lighthall JW, Goshgarian HG, Pindeerski CR (1990): Characterization of axonal injury produced by controlled cortical impact. J Neurotrauma 7 (2): 65–76

    Article  CAS  Google Scholar 

  • Lindgren S, Rinder L (1966): Experimental studies in head injury. II. Pressure propagation in “percussion concussion.” Biophysik 3: 174–180

    Article  CAS  Google Scholar 

  • Lyeth BG, Jenkins LW, Hamm RJ, Phillips LL, Dixon CE, Yao JJ, Young HF, Stubbins JF, Clifton GL, Hayes RL (1989): Pretreatment with MK-801 reduces behavioral deficits following traumatic brain injury (TBI) in rats. Soc Neurosci Abst 15: 1113

    Google Scholar 

  • Lyeth BG, Jenkins LW, Hamm RJ, Dixon CE, Phillips LL, Clifton GL, Young HF, Hayes RL (1990): Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res 526: 249–258

    Article  CAS  Google Scholar 

  • Makiyama Y, Jenkins LW, Lyeth BG, Phillips LL, Dixon CE, Hamm RJ, DeWitt DS, Povlishock JT, Clifton GL, Hayes RL: An ultrastructural analysis of the CA1 sector of the excitotoxic rodent hippocampus following mild and moderate traumatic brain injury. Acta Neuropathol Submitted

    Google Scholar 

  • McIntosh TK, Nobel L, Andrews B, Faden AI (1987): Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model. Cent Nery System Trauma 4 (2): 119–134

    Article  CAS  Google Scholar 

  • McIntosh TK, Vink R, Yamakami I, Fernyak S, Soares H, Faden AL (1989): Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model. J Neurosci 28 (1): 233–244

    Article  CAS  Google Scholar 

  • Miller JD, Sweet RC, Narayan R, Becker DP (1978): Early insults to the injured brain. JAMA 240: 439–442

    Article  CAS  Google Scholar 

  • Miller LP, Lyeth BG, Jenkins LW, Oleniak L, Hamm RJ, Phillips LL, Clifton GL, Hayes RL (1990): Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res 526 (1): 103–107

    Article  CAS  Google Scholar 

  • Mitchell DE, Adams JH (1973): Primary focal impact damage to the brain stem in blunt head injuries: Does it exist? Lancet ii:215–218

    Article  Google Scholar 

  • Nilsson B, Ponten U, Voigt G (1977): Experimental head injury in the rat. Part I. Mechanics, pathophysiology, and morphology in an impact acceleration trauma model. J Neurosurg 47: 241–251

    Article  CAS  Google Scholar 

  • Ommaya AK, Geller A, Parsons LC (1971): The effects of experimental head injury on one-trial learning in rats. Int JNeurosci 1: 371–378

    CAS  Google Scholar 

  • Ommaya AK, Gennarelli TA (1974): Cerebral concussion and traumatic unconsciousness: Correlation of experimental and clinical observations on blunt head injuries. Brain 97: 633–654

    Article  CAS  Google Scholar 

  • Ommaya AK (1982): Mechanisms of cerebral concussion, contusions, and other effects of head injury In: Neurological Surgery, Vol 4, Youmans JR, ed. Philadelphia: WB Saunders Co, pp 1877–1895

    Google Scholar 

  • Parkinson D, West M, Pathiraja T (1978): Concussion: Comparisons of humans and rats. Neurosurgery 3: 176–180

    Article  CAS  Google Scholar 

  • Plum F, Posner JB, eds (1980): The Diagnosis of Stupor and Coma, 3rd ed. Philadelphia: FA Davis

    Google Scholar 

  • Povlishock JT, Becker DP, Miller JD, et al. (1979): The morphopathologic substrates of concussion. Acta Neuropathol 47: 1–11

    Article  CAS  Google Scholar 

  • Povlishock JT, Becker DP, Cheng CLY, Vaughan GW (1983): Axonal change in minor head injury. J Neuropathol Exp Neurol 42: 225

    Article  CAS  Google Scholar 

  • Povlishock JT (1989): Experimental studies of head injury In: Textbook of Head Injury, Becker DP, Gudeman SK, eds. Philadelphia: Saunders

    Google Scholar 

  • Rapoport SI, London ED, Fredericks WR, et al (1981): Altered cerebral glucose utilization following blood-brain barrier opening by hypertonicity or hypertension. Exp Neurol 74: 519–529

    Article  CAS  Google Scholar 

  • Rosner MJ, Bennett MD, Becker DP (1982): The clinical relevance of laboratory head injury models In: Head Injury: Basic Clinical Aspects, Grossman RG, Gildenberg PD, eds. New York: Raven Press

    Google Scholar 

  • Rosner MJ, Becker DP (1983): The etiology of plateau waves: A theoretical model and experimental observations In: Intracranial Pressure V. Berlin: Springer-Verlag, pp 301–306

    Google Scholar 

  • Russell WR, Schiller F (1949): Crushing injuries of the skull: Clinical and experimental observations. J Neurol Neurosurg Psychiatry 12: 52–60

    Article  CAS  Google Scholar 

  • Saunders ML, Miller JD, Stablein D, Allen G (1979): The effects of graded experimental trauma in cerebral blood flow and responsiveness to CO2. J Neurosurg 51: 18–26

    Article  CAS  Google Scholar 

  • Seelig JM, Becker DP, Miller JD, et al. (1981): Traumatic acute subdural hematoma: Major mortality reduction in comatose patients treated within four hours. N Engl J Med 304: 1511–1518

    Article  CAS  Google Scholar 

  • Shima K, Marmarou A (1991): Evaluation of brain stem dysfunction following severe fluid percussion head injury to the cat. JNeurosurg 72: 270–277

    Google Scholar 

  • Siesjö BK, Abdul-Rahman A (1979): A metabolic basis for the selective vulnerability of neurons in status epilepticus. Acta Physiol Scand 106: 377–378

    Article  Google Scholar 

  • Somerson SK, Stokes BT (1987): Functional analysis of an electromechanical spinal cord injury device. Exp Neurol 96: 82–96

    Article  CAS  Google Scholar 

  • Stalhammar D, Galinat BJ, Allen AM, Stonnington HH, Hayes RL (1987): A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II Physiological and neuropathological observation. Brain Injury 1: 93–112

    Article  Google Scholar 

  • Strich SJ (1970): Lesions in the cerebral hemispheres after blunt head injury. J Clin Pathol 23 (Suppl 4): 166–171

    Article  Google Scholar 

  • Sullivan HG, Martinez J, Becker DP, et al. (1976): Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45 (5): 520–534

    Article  Google Scholar 

  • Symonds CP (1962): Concussion and its sequelae. Lancet 1: 5

    Google Scholar 

  • Teasdale G (1976): Assessment of head injuries. Br J Anaesth 48:761–766

    Article  CAS  Google Scholar 

  • Ward AA Jr (1966): The physiology of concussion. Clin Neurosurg 12: 95–111

    Article  Google Scholar 

  • Wei EP, Dietrich WD, Povlishock JT, et al. (1980): Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46: 37–47

    Article  CAS  Google Scholar 

  • Welsh FA, Greenberg JH, Jones SC, et al. (1980): Correlation between glucose utilization and metabolite levels following middle cerebral artery occlusion in the cat. Stroke 11: 79–83

    Article  CAS  Google Scholar 

  • Yamakami I, McIntosh TK (1989): Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metabol 9: 117–124

    Article  CAS  Google Scholar 

  • Yuan XQ, Prough DS, Smith TL, Dewitt DS (1988): The effects of traumatic brain injury on regional cerebral blood flow in rats. J Neurotrauma 5 (4): 289–301

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Hayes, R.L., Dixon, C.E., Carrin, S.R. (1992). Head Trauma Model Systems. In: Marangos, P.J., Lal, H. (eds) Emerging Strategies in Neuroprotection. Advances in Neuroprotection, vol 22. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-6796-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6796-3_5

  • Published:

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-6798-7

  • Online ISBN: 978-1-4684-6796-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics