Temperature Modulation of Neuronal Injury

  • Mordecai Y.-T. Globus
  • Raul Busto
  • W. Dalton Dietrich
  • Linda Sternau
  • Eiharu Morikawa
  • Myron D. Ginsberg
Part of the Advances in Neuroprotection book series (AN, volume 22)


The concept of altering the body temperature to achieve a therapeutic result in an injured brain is not new. Much has been written, both in the experimental and clinical literature, on therapeutic hypo- and hyperthermia. The protective effect of profound hypothermia (30°C or less) has been well established during cardiac and intracranial surgical procedures necessitating interruption of blood flow to the brain. Hypothermia has also been and continues to be used in the head-injured patient for the control of increased intracranial pressure that is refractory to hyperventilation, ventricular drainage, osmotherapy, and barbiturates. Conversely, the adjunctive chemotherapeutic effect of selective brain tumor hyperthermia remains under intense investigation.


Brain Temperature Mild Hypothermia Cereb Blood Flow Transient Global Ischemia Profound Hypothermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984): Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374CrossRefGoogle Scholar
  2. Benveniste H, Jorgensen MB, Sandberg M, Christensen T, Hagberg H, Diemer NH (1989): Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3. J Cereb Blood Flow Metab 9: 629–639CrossRefGoogle Scholar
  3. Berntman L, Welsh FA, Harp JR (1981): Cerebral protective effect of low-grade hypothermia. Anesthesiology 55: 495–498CrossRefGoogle Scholar
  4. Bigelow WG, McBirnie JE (1953): Further experiences with hypothermia for intracardiac surgery in monkeys and groundhogs. Ann Surg 137: 361–364CrossRefGoogle Scholar
  5. Biggar WD, Barker C, Bohn D, Kent G (1986): Partial recovery of neutrophil functions during prolonged hypothermia in pigs. J Appl Physol 60 (4): 1186–1189Google Scholar
  6. Bloch M (1967): Cerebral effects of rewarming following prolong hypothermia: Significance for the management of severe cranio-cerebral injury and acute pyrexia. Brain 90: 769–784CrossRefGoogle Scholar
  7. Boels PJ, Verbeuren TJ, Vanhoutte PM (1985): Moderate cooling depresses the accumulation and the release of newly synthesized catecholamines in isolated canine saphenous veins. Experientia 41: 1374–1377CrossRefGoogle Scholar
  8. Busto R, Dietrich WD, Globus MY-T, Valdes I, Scheinberg P, Ginsberg MD (1987): Small differences in intra-ischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738CrossRefGoogle Scholar
  9. Busto R, Globus MY-T, Dietrich WD, Valdes I, Martinez E, Watson BD, Ginsberg MD (1988): Reduction of extracellular glutamate release during ischemia does not ameliorate ischemic striatal damage. Soc Neurosci Abstr 14: 301Google Scholar
  10. Busto R, Globus MY-T, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1989a): Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20: 904–910CrossRefGoogle Scholar
  11. Busto R, Dietrich WD, Globus MY-T, Ginsberg MD (1989b): Postischemic moderate hypothermia inhibits CAI hippocampal ischemic neuronal injury. Neurosci Lett 101: 299–304CrossRefGoogle Scholar
  12. Chopp M, Chen H, Dereski MO, Garcia JH (1991): Mild hypothermic intervention after graded ischemic stress in rats. Stroke 22: 37–43CrossRefGoogle Scholar
  13. Chopp M, Welch KMA, Tidwell CD, Knight R, Helpern JA (1988): Effect of mild hyperthermia on recovery of metabolic function after global cerebral ischemia in cats. Stroke 19: 1521–1525CrossRefGoogle Scholar
  14. Chopp M, Knight R, Tidwell CD, Helpern JA, Brown E, Welch KMA (1989): The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: Comparison to normothermia and hyperthermia. J Cereb Blood Flow Metab 9: 141–148CrossRefGoogle Scholar
  15. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991): Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11: 114–121CrossRefGoogle Scholar
  16. Connolly JE, Boyd RJ, Calvin JW (1962): The protective effect of hypothermia in cerebral ischemia: Experimental and clinical applications by selective brain cooling in the human. Surgery 52: 15–24PubMedGoogle Scholar
  17. deGuzman VC, Webb WR, Grogan JB (1962): The effect of hypothermia on clearance of staphylococcal bacteremia. Clin Res 10: 58Google Scholar
  18. Dietrich WD, Busto R, Valdes I, Loor Y (1990a): Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21: 1318–1325CrossRefGoogle Scholar
  19. Dietrich WD, Busto R, Halley M, Valdes I (1990b): The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49: 486–497CrossRefGoogle Scholar
  20. Dietrich WD, Busto R, Alonso O, Pita-Loor Y, Globus MY-T, Ginsberg MD (1991a): Intraischemic brain hypothermia promotes postischemic metabolic recovery and somatosensory circuit activation. J Cereb Blood Flow Metab 11: S846CrossRefGoogle Scholar
  21. Dietrich WD, Halley M, Valdes I, Busto R (1991b): Interrelationships between increased vascular permeability and acute neuronal damage following temperature controlled brain ischemia in rats. Acta Neuropathol 81: 615–625CrossRefGoogle Scholar
  22. Drake C, Jory T (1962): Hypothermia in the treatment of critical head injury. Can Med Assoc J 87: 887–891PubMedPubMedCentralGoogle Scholar
  23. Fay T (1945): Observations on generalized refrigeration in cases of severe cerebral trauma. Publ Assoc Nery Ment Dis 24: 611–619Google Scholar
  24. Fedor EJ, Fisher ER, Lee SH, Weitzel WK, Fisher B (1956): Effect of hypothermia upon induced bacteremia. Proc Soc Exp Biol Med 93: 510–512CrossRefGoogle Scholar
  25. Gamache FW, Ducker TB (1982): Alterations in neurological function in head-injured patients experiencing major episodes of sepsis. Neurosurgery 10: 468–472CrossRefGoogle Scholar
  26. Ginsberg MD, Globus MY-T, Busto R, Dietrich WD (1990): The potential of combination pharmacotherapy in cerebral ischemia. In: Pharmacology of Cerebral Ischemia, Krieglstein J, Oberpichler H, eds. Stuttgart: Wissenschaftliche Verlagsgesellsch, pp 499–510Google Scholar
  27. Globus MY-T, Busto R, Harik SI, Dietrich WD, Ginsberg MD (1987a): Role of dopamine in ischemic striatal injury: Metabolic evidence. Neurology 37: 1712–1719CrossRefGoogle Scholar
  28. Globus MY-T, Ginsberg MD, Dietrich WD, Busto R, Scheinberg P (1987b): Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett 80: 251–256CrossRefGoogle Scholar
  29. Globus MY-T, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1988a): Effect on ischemia on the in vivo release of striatal dopamine, glutamate, and y-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51: 1455–1464CrossRefGoogle Scholar
  30. Globus MY-T, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1988b): Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91: 36–40CrossRefGoogle Scholar
  31. Globus MY-T, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1989): Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. J Cereb Blood Flow Metab 9: 892–896CrossRefGoogle Scholar
  32. Globus MY-T, Busto R, Martinez E, Valdes I, Dietrich WD (1990): Ischemia induces release of glutamate in regions spared from histopathological damage in the rat. Stroke 21 (Suppl):III43–III46Google Scholar
  33. Globus MY-T, Busto R, Martinez E, Valdes I, Dietrich WD, Ginsberg MD (1991a): Early moderate postischemic hypothermia attenuates the rise in exictotoxic index in the hippocampus. A possible mechanism underlying the beneficial effects of early postischemic moderate cooling. J Cereb Blood Flow Metab 11 (suppl): S10CrossRefGoogle Scholar
  34. Globus MY-T, Busto R, Martinez E, Valdes I, Dietrich WD, Ginsberg MD (1991b): Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and y-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem 57: 470–478CrossRefGoogle Scholar
  35. Haikala H, Karmalahti T, Ahtee L (1986): The nicotine-induced changes in striatal dopamine metabolism of mice depend on body temperature. Brain Res 375: 313–319CrossRefGoogle Scholar
  36. Horn M, Schlote W, Henrich HA (1991): Global cerebral ischemia and subsequent selective hypothermia: A neuropathological and morphometrical study on ischemic neuronal damage in cat. Acta Neuropathol 81: 443–449CrossRefGoogle Scholar
  37. Johnson JW, Ascher P (1987): Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531ADSCrossRefGoogle Scholar
  38. Jorgensen MB, Johansen FF, Diemer NH (1987): Removal of the entorhinal cortex protects hippocampal CA1 neurons from ischemic damage. Acta Neuropathol (Berl) 73: 189–194CrossRefGoogle Scholar
  39. Kleckner NW, Dingledine R (1988): Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241: 835–837ADSCrossRefGoogle Scholar
  40. Kopf GS, Mirvis DM, Myers RE (1975): Central nervous system tolerance to cardiac arrest during profound hypothermia. J Surg Res 18: 29–34CrossRefGoogle Scholar
  41. Kramer RS, Sanders AP, Lesage AM, Woodhall B, Sealy WC (1968): The effect of profound hypothermia on preservation of cerebral ATP content during circulatory arrest. J Thorac Cardiovasc Surg 56: 699–709PubMedGoogle Scholar
  42. Kuroiwa T, Bonnekoh P, Hossmann K-A (1990): Prevention of postischemic hyperthermia prevents ischemic injury of CAI neurons in gerbils. J Cereb Blood Flow Metab 10: 550–556CrossRefGoogle Scholar
  43. Lazorthes G, Campan L (1958): Hypothermia in the treatment of craniocerebral traumatism. J Neurosurg 15: 162–167CrossRefGoogle Scholar
  44. Leonov Y, Sterz F, Safar P, Radovsky A, Oku K, Tisherman S, Stezoski SW (1990): Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 10: 57–70CrossRefGoogle Scholar
  45. Little DM (1959): Hypothermia. Anesthesiology 20: 842–877CrossRefGoogle Scholar
  46. Lougheed WM, Sweet WH, White JC, Brewster WR (1955): Use of hypothermia in surgical treatment of cerebral vascular lesions: A preliminary report. JNeurosurg 12: 240–255Google Scholar
  47. Marshall SB, Owens JC, Swan H (1956): Temporary circulatory occlusion to the brain of the hypothermic dog. Arch Surg 72: 98–106CrossRefGoogle Scholar
  48. Meldrum B (1989): Excitotoxicity in ischemia: An overview. In: Cerebrovascular Diseases—Sixteenth Research (Princeton) Conference, Ginsberg MD, Dietrich WD, eds. New York: Raven Press, pp 47–60Google Scholar
  49. Michenfelder JD, Theye RA (1970): The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33: 430–439CrossRefGoogle Scholar
  50. Minamisawa H, Smith M-L, Siesjö BK (1990a): The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 28: 26–33CrossRefGoogle Scholar
  51. Minamisawa H, Nordstrom C-H, Smith M-L, Siesjö BK (1990b): The influence of mild body and brain hypothermia on ischemia brain damage. J Cereb Blood Flow Metab 10: 365–374CrossRefGoogle Scholar
  52. Morikawa E, Ginsberg MD, Busto R, Dietrich WD, Globus MY-T, Kraydieh S (1991a): Moderate cerebral hypothermia fails to ameliorate focal ischemic injury. Stroke 22: 130CrossRefGoogle Scholar
  53. Morikawa E, Ginsberg MD, Dietrich WD, Busto R, Globus MY-T, Kraydieh S (1991b): Effect of moderate intraischemic hypothermia on brain focal injury following reversible middle cerebral artery occlusion. J Cereb Blood Flow Metab 11 (Suppl): S116Google Scholar
  54. Negrin J (1961): Selective local hypothermia in neurosurgery. NY State J Med 61: 2951–2965Google Scholar
  55. Okuda C, Saito A, Miyazaki M, Kuriyama K (1986): Alteration of the turnover of dopamine and 5-hydroxytryptamine in rat brain associated with hypothermia. Pharmacol Biochem Behav 25: 79–83CrossRefGoogle Scholar
  56. Pool JL, Kessler L (1958): Mechanism and control of centrally induced cardiac irregularities during hypothermia. J Neurosurg 15: 52–63CrossRefGoogle Scholar
  57. Roberts E, Chase TN, Tower DB (eds) (1976): GABA in Nervous System Function. New York: Raven PressGoogle Scholar
  58. Rosomoff HL, Holaday DA (1954): Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 179: 85–88CrossRefGoogle Scholar
  59. Rosomoff HL, Gilbert R (1955): Brain volume and cerebrospinal fluid pressure during hypothermia. Am J Physiol 183: 19–22CrossRefGoogle Scholar
  60. Rosomoff HL (1957): Hypothermia and cerebral vascular lesions. II. Experimental interruption followed by induction of hypothermia. Arch Neurol Psychiatry 78: 454–464CrossRefGoogle Scholar
  61. Rosomoff HL (1959a): Protective effects of hypothermia against pathological processes of the nervous system. Ann NY Acad Sci 80: 475–486ADSCrossRefGoogle Scholar
  62. Rosomoff HL (1959b): Experimental brain injury during hypothermia. JNeurosurg 16: 177–187Google Scholar
  63. Rothman SM (1983): Synaptic activity mediates death of hypoxic neurons. Science 220: 536–537ADSCrossRefGoogle Scholar
  64. Rothman SM (1984): Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4: 1884–1891PubMedPubMedCentralGoogle Scholar
  65. Rothman SM, Olney JW (1986): Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann Neurol 19: 105–111CrossRefGoogle Scholar
  66. Sedzimir CB (1959): Therapeutic hypothermia in cases of head injury. JNeurosurg 16: 407–414Google Scholar
  67. Shapiro H (1985): Barbiturates in brain ischemia. Br JAnaesth 57: 82–95CrossRefGoogle Scholar
  68. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984): Blockade of N-methyl-o-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852ADSCrossRefGoogle Scholar
  69. Sternau LL, Globus MY-T, Martinez E, Dietrich WD, Busto R, Ginsberg MD (1991): Ischemia-induced neurotransmitter release: Effects of mild intraischemic hyperthermia. Neurosci Abstr 17: 1080Google Scholar
  70. Valeri CR, Cassidy G, Khuri S, Feingold H, Ragno G, Altschule MD (1978): Hypothermia-induced reversible platelet dysfunction. Ann Surg: 175–181CrossRefGoogle Scholar
  71. vanDijk F, Green EJ, Dietrich WD, Busto R, McCabe PM, Markgraf CG, Globus MY-T, Alonso 0 (1991): Protective effects of brain hypothermia on behavior following global cerebral ischemia in rats. Soci Neurosci Abstr in pressGoogle Scholar
  72. Vanhoutte PM, Verbeuren TJ, Webb RC (1981): Local modulation of the adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 61: 151–247CrossRefGoogle Scholar
  73. Venugopal P, Olszowka J, Wagner H, Vlad P, Lambert E, Subramanian S (1973): Early correction of congenital heart disease with surface-induced deep hypothermia and circulatory arrest. J Thorac Cardiovas Surg 66: 375–386Google Scholar
  74. Walker AE, Black P (1960): The heroic treatment of acute head injuries: A critical analysis of the results. Am Surg 26: 184–188Google Scholar
  75. Welsh FA, Sims RE, Harris VA (1990): Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 10: 557–563CrossRefGoogle Scholar
  76. Wieloch T, Lindvall O, Blomqvist P, Gage FH (1985): Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurolog Res 7: 24–26CrossRefGoogle Scholar
  77. Young RS, Olenginski TP, Yagel SK, Towfighi J (1983): The effect of graded hypothermia on hypoxic-ischemic brain damage: A neuropathologic study in the neonatal rat. Stroke 14: 929–934CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Mordecai Y.-T. Globus
  • Raul Busto
  • W. Dalton Dietrich
  • Linda Sternau
  • Eiharu Morikawa
  • Myron D. Ginsberg

There are no affiliations available

Personalised recommendations