Skip to main content

Homogenization of Miscible Displacement in Unsaturated Aggregated Soils

  • Chapter
Composite Media and Homogenization Theory

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 5))

Abstract

A double porosity model is derived for the transport of a solute in an unsaturated soil. The formal homogenization is carried out and the resulting macro-model is dealt with numerically. Comparisons of break-through curves are given for cases with different degrees of aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. ALLAIRE Homogenization of the Stokes flow in a connected porous medium Asympt. Anal. 2 (1989) 203–222

    MathSciNet  MATH  Google Scholar 

  2. ARBOGAST T., DOUGLAS J., HORNUNG U. Derivation of the double porosity model of single phase flow via homogenization theory SIAM J. Math. Anal. 21 (1990)

    Google Scholar 

  3. AURIAULT J.-L., LEBAIGUE O., BONNET G. Dynamics of two immiscible fluids flowing through deformable porous mediaTiPM 4 (1989) 105–128

    Google Scholar 

  4. G. I. BARENBLATT, I. P. ZHELTOV, I. N. Kochina Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)J. Appl. Math. Mech. 24 (1960) 1286–1303

    Article  MATH  Google Scholar 

  5. BARKER J. A. Block-geometry functions characterizing transport in densely fissured mediaJ. Hydrol. 77 (1985) 263–279

    Article  Google Scholar 

  6. BURRIDGE R., KELLER J. Poroelasticity equations derived from microstructureJ. Acoust. Soc. Amer. 70 (1981) 1140–1146

    Article  MATH  Google Scholar 

  7. DOUGLAS J., ARBOGAST T. Dual-porosity models for flow in naturally fractured reservoirs Cushman J. (Ed.) “Dynamics of Fluids in Hierarchical Porous Media” Academic Press (1990) Chapter VII, 177–221

    Google Scholar 

  8. GENUCHTEN M. TH., WIERENGA P. J. Mass transfer studies in sorbing porous media I: Analytical solutions II: Experimental evaluation with tritium (3 H 2 O) Soil Sci. Soc. Amer. J. 40 (1976) 473–480

    Article  Google Scholar 

  9. GENUCHTEN M. TH., WIERENGA P. J. Mass transfer studies in sorbing porous media I: Analytical solutions II: Experimental evaluation with tritium (3 H 2 O) Soil Sci. Soc. Amer. J. 41 (1977) 272–282

    Article  Google Scholar 

  10. GENUCHTEN M. TH., WIERENGA P. J., O’Connor G. A. Mass transfer studies in sorbing porous media III: Experimental evaluation with 2,4,5-T Soil Sci. Soc. Amer. J. 41 (1977) 278–285

    Article  Google Scholar 

  11. HORNUNG U. Compartment and micro-structure models for miscible displacement in porous media Rocky Mountain J. Math., to appear

    Google Scholar 

  12. HORNUNG U. Applications of the homogenization method to flow and transport through porous media Xiao Shutie (Ed.)“Flow and Transport in Porous Media. Summer School, Beijing 1988” World Scientific, Singapore, to appear

    Google Scholar 

  13. U. HORNUNG, W. JÄGER A model for chemical reactions in porous mediaJ. Warnatz, W. Jäger (Eds.) “Complex Chemical Reaction Systems. Mathematical Modeling and Simulation” Chemical Physics 47 Springer, Berlin (1987) 318–334

    Chapter  Google Scholar 

  14. U. HORNUNG, W. JĂ„GER Diffusion, convection, adsorption, and reaction of chemicals in porous media J. Diff. Equat., to appear

    Google Scholar 

  15. HORNUNG U., SHOWALTER R. Diffusion models for fractured mediaJ. Math. Anal. Applies. 147 (1990) 69–80

    Article  MathSciNet  MATH  Google Scholar 

  16. J. B. KELLER Darcy’s law for flow in porous media and the two-space method R. L. Sternberg (Ed.) “Nonlinear Partial Differential Equations in Engineering and Applied Sciences” Dekker (1980) 429–443

    Google Scholar 

  17. MIKELIĆ A. A convergence theorem for homogenization of two-phase miscible flow through fractured reservoirs with uniform fracture distributionApplic. Anal. 33 (1989) 203–214

    Article  MATH  Google Scholar 

  18. MIKELIĆ A. Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary Ann. Mat. Pura Appl., to appear

    Google Scholar 

  19. L. TARTAR Incompressible fluid flow in a porous medium — convergence of the homogenization processE. Sanchez-PaJencia (Ed.) “Non-Homogeneous Media and Vibration Theory” Lecture Notes in Physics 127 Springer, Berlin (1980) 368–377

    Google Scholar 

  20. C. VOGT A homogenization theorem leading to a Volterra integro — differential equation for permeation chromatographyPreprint 155 SFB 123 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Boston

About this chapter

Cite this chapter

Hornung, U. (1991). Homogenization of Miscible Displacement in Unsaturated Aggregated Soils. In: Dal Maso, G., Dell’Antonio, G.F. (eds) Composite Media and Homogenization Theory. Progress in Nonlinear Differential Equations and Their Applications, vol 5. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6787-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6787-1_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6789-5

  • Online ISBN: 978-1-4684-6787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics