Skip to main content

Part of the book series: Mathematical Modelling ((MMO,volume 6))

  • 291 Accesses

Abstract

This paper examines chaos in some population models for biological processes. In particular, the paper is concerned with chaos produced by discretization of continuous-time population models, and with the question of whether or not this chaotic behavior can occur when a feedback control management strategy is applied to continuous-time population models. Using two classical population models, it is shown that both exponential discretization and discretization associated with numerical simulation can produce chaos in the resulting discrete-time system. For example, a continuous-time Lotka-Volterra system exhibits periodic trajectories, but a particular discretization procedure is shown to yield discrete-time trajectories that all converge to a very complicated chaotic strange attractor, even if the discretization time steps are small. The results in the paper also show that this chaotic behavior can occur even if a feedback control management strategy is applied to the continuous-time system to stabilize the equilibrium point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coddington, E.A. and N. Levinson. 1955. Theory of Ordinary Differential Equations, McGraw-Hill, New York.

    MATH  Google Scholar 

  2. Cook, P.A. 1985. Simple Feedback Systems with Chaotic Behaviour, Systems and Control Letters, 6, pp. 223–227.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cook, P.A. 1986. Chaotic Behaviour in Feedback Systems, Proc. 25th Conf on Decision and Control, Athens, Greece, pp. 1151–1154.

    Google Scholar 

  4. Devaney, R.L. 1988. An Introduction to Chaotic Dynamical Systems, Revised 2nd Printing, Benjamin/Cummings Pub. Co., Menlo Park, CA.

    Google Scholar 

  5. Farmer, J.D., E. Ott, and J.A. Yorke. 1983. The Dimension of Chaotic Attractors, Physica 7D, pp. 53–180.

    MathSciNet  Google Scholar 

  6. Fisher, M.E. and W.J. Grantham. 1985. Estimating the Effect of Continual Disturbances on Discrete-Time Population Models, J. of Math. Biology, 22, pp. 199–207.

    Article  MathSciNet  MATH  Google Scholar 

  7. Grantham, W.J. and M.E. Fisher. 1987. Generating Reachable Set Boundaries for Discrete-Time Systems, in Modeling and Management of Resources Under Uncertainty, Vincent, T.L., et al., eds, Springer-Verlag, New York.

    Google Scholar 

  8. Grebogi, C., E. Ott, and J.A. Yorke. 1985. Attractors on an N-Torus: Quasiperiodicity Versus Chaos, Physica 15D, pp. 354–373.

    MathSciNet  Google Scholar 

  9. Grebogi, C., E. Ott, and J.A. Yorke. 1987. Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics, Science, 238, pp. 632–638.

    Article  MathSciNet  MATH  Google Scholar 

  10. Guckenheimer, J. and P. Holmes. 1986. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Revised 2nd Printing, Applied Mathematical Sciences series, Vol 42., Springer-Verlag, New York.

    Google Scholar 

  11. Hsu, C.S. 1987. Cell-to-Cell Mapping, Applied Mathematical Sciences series, Vol 64., Springer-Verlag, New York.

    Google Scholar 

  12. Inoue, M. and H. Kamifukumoto. 1984. Scenarios Leading to Chaos in a Forced Lotka Volterra Model, Progress in Theoretical Physics, Vol 71, No. 5, pp. 930–937.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, T. and J.A. Yorke. 1975. Period Three Implies Chaos, Amer. Math. Monthly, 82, pp. 985.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lorenz, E.N. 1963. Deterministic Nonperiodic Flows, J. Atmos. Sci., 20, pp. 130.

    Article  Google Scholar 

  15. Mandelbrot, B.B. 1982. The Fractal Geometry of Nature, Freeman Pub., San an ancisco.

    MATH  Google Scholar 

  16. May, R.M. 1974. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos, Science, 186, pp. 645–647.

    Article  Google Scholar 

  17. May, R.M. 1976. Simple Mathematical Models with Very Complicated Dynamics, Nature, 261, pp. 459–467.

    Article  Google Scholar 

  18. Mees, A.I. and C.T. Sparrow. 1981. Chaos, IEE Proc. Part D, 128, pp. 201–205.

    Article  MathSciNet  Google Scholar 

  19. Peitgen, H.-O. and P.H. Richter. 1986. The Beauty of Fractals, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  20. Roux, J.C., A. Rossi, S. Bachelart, and C Vidal. 1981. Experimental Observation of Complex Behaviour During a Chemical Reaction, Physica 2D, pp. 395.

    MathSciNet  Google Scholar 

  21. Rubio, F.R., J. Aracil, and E.F. Camacho. 1985. Chaotic Motion in an Adaptive Control System, Int. J. Control, 42, No. 2, pp. 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  22. Schuster, H.G. 1988. Deterministic Chaos, 2nd Revised Ed., VCH Pub., New York.

    Google Scholar 

  23. Ushio, T. and K. Hirai. 1983. Chaos in Nonlinear Sampled-Data Control Systems, Int. J. Control, 38, No. 5, pp. 1023–1033.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiggens, S. 1988. Global Bifurcations and Chaos, Applied Mathematical Sciences series, Vol. 73, Springer-Verlag, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Grantham, W.J., Athalye, A.M. (1990). A Chaotic System: Discretization and Control. In: Vincent, T.L., Mees, A.I., Jennings, L.S. (eds) Dynamics of Complex Interconnected Biological Systems. Mathematical Modelling, vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6784-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6784-0_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6786-4

  • Online ISBN: 978-1-4684-6784-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics