Skip to main content

The Law of the Iterated Logarithm for Empirical Processes

  • Chapter
Probability in Banach Spaces 6

Part of the book series: Progress in Probability ((PRPR,volume 20))

Abstract

Let (A,A,P) be a probability space and F ⊂ L2(A,A,P). Let X i , i ≥ 1, be a sequence of i.i.d. random variables with distribution P and let P n = n−1(δX 1 + ? + δX n ) be the n’th empirical measure for P. Using the methods employed to describe functional Donsker classes, we characterize when the normalized empirical process

$${{v}_{n}}(f):={{n}^{1/2}}\int{f(d{{P}_{n}}-dP)},f\in F$$

satisfies the compact and bounded law of the iterated logarithm (LIL) uniformly over F. Sufficient conditions implying the bounded LIL are obtained. In particular, we obtain two new metric entropy integral conditions implying the bounded LIL. Moreover, the integral condition is essentially the best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. K.S. Alexander, Probability inequalities for empirical processes and a law of the iterated logarithm, Ann. Prob. 12 (1984), 1041–1067.

    Article  MATH  Google Scholar 

  2. N.T. Anderson, E. Giné, M. Ossiander and J. Zinn, The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Prob. Theory Relat. Fields 77 (1988), 271–305.

    Article  Google Scholar 

  3. I.S. Borisov, Problem of accuracy of approximation in the central limit theorem for empirical measures, Siberskij Matematicheskig Zhurnal 24, No. 6 (1983), 14–25.

    Google Scholar 

  4. I.S. Borisov, Problem of accuracy of approximation in the central limit theorem for empirical measures, Siberian Mathematical Journal, July issue, 1984, pp. 833–843.

    Google Scholar 

  5. R.M. Dudley, Central limit theorems for empirical measures, Ann. Prob. 6 (1978), 899–929.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.M. Dudley, Central limit theorems for empirical measures, Correction 7 (1979), pp. 909–911.

    MathSciNet  MATH  Google Scholar 

  7. R.M. Dudley, A course on empirical processes, pp. 1–142 in “École d’Été de Probabilités Saint-Flour XII-1982”, Lecture Notes in Math. 1097 (1984). Springer Verlag 1984.

    Chapter  Google Scholar 

  8. R.M. Dudley, An extended Wichura theorem, definition of Donsker class, and weighted empirical distributions, pp. 141–178 in “Probability in Banach Spaces V”, Lecture Notes in Math. 1153 (1984). Springer Verlag 1985.

    Chapter  Google Scholar 

  9. R.M. Dudley and W. Philipp, Invariance principles for sums of Banach space valued random elements and empirical processes, Z. Wahr. v. Geb. 62 (1983), 509–552.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Durst and R.M. Dudley, Empirical processes, Vapnik-Chervonenkis classes and Poisson processes, Prob. math. Statist. (Wroclaw) 1, No. 2 (1981), 109–115.

    MathSciNet  Google Scholar 

  11. X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, pp. 1–96 in “École d’Été de Probabilités Saint-Flour IV-1974”, Lecture Notes in Math. 480 (1974). Springer Verlag 1975.

    Google Scholar 

  12. H. Finkelstein, The law of the iterated logarithm for empirical distributions, Ann. Math. Statist. 42 (1971), 607–615.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Giné and J. Zinn, Some limit theorems for empirical processes, Ann. Prob. 12 (1984), 929–989.

    Article  MATH  Google Scholar 

  14. E. Giné and J. Zinn, Lectures on the central limit theorem for empirical processes, pp. 50–113 in “Probability and Banach Spaces”, Proceedings Zaragoza 1985, Lecture Notes in Math. Springer Verlag 1986.

    Google Scholar 

  15. V.I. Kolcinskii, On the law of the iterated logarithm in the Strassen form for empirical measures, Theor. Prob. and Math. Stat. 25 (1982), 43–49.

    Google Scholar 

  16. J. Kuelbs, Kolmogorov’s law of the iterated logarithm for Banach space valued random variables, Ill. J. Math. 21 (1977), 784–800.

    MathSciNet  MATH  Google Scholar 

  17. J. Kuelbs and R.M. Dudley, Log log laws for empirical measures, Ann. Prob. 8 (1980), 405–418.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Ledoux, Loi du logarithme itéré dans C(S) et fonction caracteristique empirique, Z. Wahr. v. Geb. 60 (1982), 425–435.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Ledoux and M. Talagrand, Characterization of the law of the iterated logarithm in Banach spaces, Ann. Prob. 16 (1988), 1242–1264.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Ossiander, A central limit theorem under metric entropy with L2 bracketing, Ann. Prob. 15 (1987), 897–919.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Pollard, A central limit theorem for empirical processes, J. Australian Math. Soc., Ser. A 33 (1982), 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Pollard, Limit theorems for empirical processes, Z. Wahr. v. Geb. 57 (1981), 181–195.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Talagrand, Donsker classes and random geometry, Ann. Prob. 15 (1987), 897–919.

    Article  Google Scholar 

  24. M. Talagrand, Regularité des processus gaussiens, C.R. Acad.Sc. Paris, t. 301, Serie I, No. 7 (1985), 379–381.

    MathSciNet  Google Scholar 

  25. J.E. Yukich, Weak convergence of the empirical characteristic function, Proc. Amer. Math. Soc. 95 (1985), 470–473.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.E. Yukich, Uniform exponential bounds for the normalized empirical process, Studia Mathematics 84 (1986), 71–78.

    MathSciNet  MATH  Google Scholar 

  27. J.E. Yukich, Théorème limite centrale et l’entropie metrique dans les espaces de Banach, C.R. Acad. Sci., Paris, t. 301, Serie I, no. 6 (1985), 333–335.

    MathSciNet  MATH  Google Scholar 

  28. J.E. Yukich, Metric entropy and the central limit theorem in Banach spaces, pp. 113–128 in “Geometrical and Statistical Aspects of Probability in Banach Spaces”, Lecture Notes in Math. 1193. Springer Verlag 1986.

    Chapter  Google Scholar 

  29. J.E. Yukich, Convergence rates for function classes with applications to the empirical characteristic function, IIlinios Journal Math. 32 (1988), 81–97.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Yukich, J.E. (1990). The Law of the Iterated Logarithm for Empirical Processes. In: Haagerup, U., Hoffmann-Jørgensen, J., Nielsen, N.J. (eds) Probability in Banach Spaces 6. Progress in Probability, vol 20. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6781-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6781-9_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6783-3

  • Online ISBN: 978-1-4684-6781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics