Skip to main content

Some Exponential Inequalities with Applications to the Central Limit Theorem in C[0,1]

  • Chapter
Probability in Banach Spaces 6

Part of the book series: Progress in Probability ((PRPR,volume 20))

Abstract

Exponential inequalities are a very useful tool in many topics in probability theory and statistics. According to the problem to study, one form or another one of such inequalities is the most convenient to use: Bernstein’s, Prohorov’s, Bennett’s, Hoeffding’s ... . Among these results, the one of Hoeffding has the simplest statement and is of course preferred if it applies. Let’s recall that result:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. De Acosta, Strong exponential integrability of sums of independent B-valued random vectors, Prob. Math. Stat. 1, fasc. 2 (1980), 133–150.

    Google Scholar 

  2. N.T. Andersen, E. Giné, M. Ossiander and J. Zinn, The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Probab. Theory Relat. Fields 77 (1988), 271–305.

    Article  MATH  Google Scholar 

  3. N.T. Andersen, E. Giné and J. Zinn, The central limit theorem for empirical processes under local conditions: the case of Radon infinitely divisible limits without Gaussian component, Trans. Amer. Math. Soc. 308 (1988), 603–635.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.M. Dudley and V. Strassen, The central limit theorem and a-entropy, Lecture Notes in Math. 89 (1969), 224–231.

    Article  MathSciNet  Google Scholar 

  5. A. Garsia, E. Rodemich and J. Rumsey jr., A real variable lemma and the continuity of paths of some gaussian processes, Indiana Univ. Math. J. 20 (1970), 565–578.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Goodman, J. Kuelbs and J. Zinn, Some results on the law of the iterated logarithm in Banach space with applications to weighted empirical processes, Ann. Prob. 9 (1981), 713–752.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Heinkel, Mesures majorantes et théorème de la limite centrale dans C(S), Z. Wahr. verw. Geb. 38 (1977), 339–351.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Heinkel, Quelques remarques relatives au théorème central-limite dans C(S), pp. 204–211 in “Vector space measures and applications P”, Lecture Notes in Math. 644. Springer Verlag 1978.

    Google Scholar 

  9. B. Heinkel, Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach, Z. Wahr. verw. Geb. 49 (1979), 211–220.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Heinkel, Mesures majorantes et loi du logarithme itéré pour les vari- ables aléatoires sous-gaussiennes, Journal of Multivariate Analysis 13 (1983), 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Hoeffding, Probability inequalities for sums of bounded random variables, Ann. Stat. Assoc. 58 (1963), 13–29.

    Article  MathSciNet  MATH  Google Scholar 

  12. N.C. Jain and M.B. Marcus, Central limit theorems for C(S)-valued random variables, J. Funct. Anal. 19 (1975), 216–231.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Jukneviciené, Sur la condition de mesure majorante pour le théorème central limite dans C[0,1]. Preprint 1985. A paraître dans Lietuvos Matematikos Rinkinys.

    Google Scholar 

  14. J. Kuelbs, The law of the iterated logarithm in C[0,1], Z. Wahr. Verw. Geb. 33 (1976), 221–235.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Ledoux, Loi du logarithme itéré dans C(S) et fonction caractéristique empirique, Z. Wahr. verw. Geb. 60 (1982), 425–435.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Ledoux and M. Talagrand, La loi du logarithme itéré dans les espaces de Banach, C.R. Acad. Sc. Paris Série I, Tome 303 (1986), 57–60.

    MathSciNet  MATH  Google Scholar 

  17. M.B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Math. 152 (1984), 245–301.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.B. Marcus and G. Pisier, Some results on the continuity of stable processes and the domain of attraction of continuous stable processes, Ann. Inst. Henri Poincaré 20 (1984), 177–199.

    MathSciNet  MATH  Google Scholar 

  19. G.J. Morrow, On a central limit theorem motivated by some random Fourier series with dependent coe f ficients. Preprint 1984.

    Google Scholar 

  20. S.V. Nagaev, Large deviations of sums of independent random variables, Ann. Prob. 7 (1979), 745–789.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Talagrand, Regularity of gaussian processes, Acta Math. 159 (1987), 99–149.

    Article  MathSciNet  MATH  Google Scholar 

  22. V.V. Yurinskii, Exponential bounds for large deviations, Theor. Prob. Appl. 19 (1974), 154–155.

    Article  Google Scholar 

  23. A. Zoglat, Mesures majorantes et propriété de limite centrale dans C[0,1]. (Thèse de 3° cycle, Strasbourg 1986 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Heinkel, B. (1990). Some Exponential Inequalities with Applications to the Central Limit Theorem in C[0,1]. In: Haagerup, U., Hoffmann-Jørgensen, J., Nielsen, N.J. (eds) Probability in Banach Spaces 6. Progress in Probability, vol 20. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6781-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6781-9_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6783-3

  • Online ISBN: 978-1-4684-6781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics