Skip to main content

The 5-HT1A Receptor: From Molecular Characteristics to Clinical Correlates

  • Chapter
Book cover Molecular Biology of G-Protein-Coupled Receptors

Abstract

The past decade has seen a remarkable growth in our understanding of the pharmacology and physiology of the various receptors for serotonin (5-hydroxytryptamine, 5-HT). Since 1979, when radioligand binding techniques were used to distinguish subtypes of 5-HT binding sites (Peroutka and Snyder, 1979), no less than ten subtypes of 5-HT receptors have been characterized (Richardson and Engel, 1986; Bradley et al., 1986; Mawe et al., 1986; Heuring and Peroutka, 1987; Dumuis et al., 1988b; Leonhardt et al., 1989; Conner and Monsour, 1990). However, the biochemical characterization of these receptors has been hampered by the lack of selective radioligands and/or cell lines expressing single well-characterized receptor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Lakoski JM (1984): Hyperpolarization of serotonergic neurons by serotonin and LSD: Studies in brain slices showing increased K+ -conductance. Brain Res 305: 181–185

    Google Scholar 

  • Albert P, Zhou QY, Van Tol HHM, Bunzow JR, Civelli O (1990): Cloning, mRNA distribution and functional expression of the 5-HT1A receptor gene. J Biol Chem 265: 5825–5832

    Google Scholar 

  • Amlaiky N, Caron MG (1985): Photoaffinity labeling of the D2-dopamine receptor using a novel high affinity radioiodinated probe. J Biol Chem 260: 1983–1986

    Google Scholar 

  • Andrade R, Malenka RC, Nicoll R (1986): A G protein couples serotonin and GABAb receptors to the same channels in hippocampus. Science 234: 1261–1265

    Google Scholar 

  • Andrade R, Nicoll R (1987a): Novel anxiolytics discriminate between postsynaptic serotonin receptors of the rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 336: 5–10

    Google Scholar 

  • Andrade R, Nicoll R (1987b): Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond) 394: 99–124

    Google Scholar 

  • Asarch KB, Shih JC (1987): Solubilization of serotonin1a and serotonin1b binding sites from bovine brain. J Neurochem 48: 1494–1501

    Google Scholar 

  • Ashkenazi A, Winslow JW, Peralta EG, Peterson GL, Schimerlik MI, Capon DJ, Ramachandran J (1987): An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238: 672–675

    Google Scholar 

  • Beck SG, Clarke WP, Goldfarb J (1985): Spiperone differentiates multiple 5- hydroxytryptamine responses in rat hippocampal slices in vitro. Eur J Pharmacol 116: 195–197

    Google Scholar 

  • Blackshear PB (1988): Approaches to the study of protein kinase C involvement in signal transduction. Am J Med Sci 31: 231–240

    Google Scholar 

  • Blier P, De Montigny C (1990): Electrophysiological investigations of the adaptive response of the 5-HT system to the administration of 5-HT1A receptor agonists. J Cardiovasc Pharmacol 15 (suppl 7): S42–S48

    Google Scholar 

  • Bockaert J, Dumuis A, Bouhelal R, Sebben M, Cory RN (1987): Piperazine derivatives, including the putative anxiolytic drugs buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedebergs Arch Pharmacol 335: 588–592

    Google Scholar 

  • Bouvier M, Hnatowich M, Collins S, Kobilka BK, DeBlasi A, Lefkowitz RJ, Car on MG (1988): Expression of a human cDNA encoding the ß2-adrenergic receptor in Chinese hamster fibroblasts (CHW): Functionality and regulation of the expressed receptors. Mol Pharmacol 33: 133–139

    Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecherane EJ, Richardson BP, Saxena PR (1986): Nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576

    Google Scholar 

  • Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988): Cloning and expression of a rat D2-dopamine receptor cDNA. Nature 336: 783–787

    Google Scholar 

  • Carli M, Samanin R (1988): Potential anxiolytic properties of 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist. Psychopharmacology 94: 84–91

    Google Scholar 

  • Claustre Y, Bénavides J, Scatton B (1988): 5-HT1A receptor agonists inhibit carbachol-induced stimulation of phosphoinositide turnover in the rat hippocampus. Eur J Pharmacol 149: 149–153

    Google Scholar 

  • Colino A, Halliwell JV (1986): 8-OH-DPAT is a strong antagonist of 5-HT action in rat hippocampus. Eur J Pharmacol 130: 151–152

    Google Scholar 

  • Colino A, Halliwell JV (1987): Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328: 73–77

    Google Scholar 

  • Conner DA, Mansour TE (1990): Serotonin receptor-mediated activation of adenylate cyclase in the neuroblastoma NCB.20: A novel 5-hydroxytryptamine receptor. Mol Pharmacol 37: 742–751

    Google Scholar 

  • Cooper SJ, Abbott A (1988): Clinical Psychopharmacology may benefit from new advances in 5-HT pharmacology. Trends Pharmacol Sci 9: 269–271

    Google Scholar 

  • Cornfield LJ, Nelson DL, Monroe PJ, Taylor EW, Nikam SS (1988): Use of forskolin stimulated adenylate cyclase in rat hippocampus as a screen for compounds that act through 5-HT1A receptors. Proc West Pharmacol Soc 31: 265–267

    Google Scholar 

  • Cornfield LJ, Nelson DL, Taylor EW, Martin AR (1989): MDL 73005: Partial agonist at the 5-HT1A receptor negatively linked to adenylate cyclase. Eur J Pharmacol 173: 189–192

    Google Scholar 

  • Cossery JM, Gozlan H, Spampinato U, Perdicakis C, Guillaumet G, Pichat L, Hamon M (1987): The selective labelling of central 5-HT1A receptor binding sites by [3H]5-methoxy-3-(di-n-propylamino) chroman. Eur J Pharmacol 140: 143–155

    Google Scholar 

  • Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, et al. (1990): Multiple second messenger pathways of «-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem 265: 63–69

    Google Scholar 

  • Dalton DW, Feniuk W, Humphrey PPA (1985): The mechanism of the hypotensive action of 5-carboxyamidotryptamine in conscious DOCA-salt hypertensive rats. Br J Pharmacol 86: 737 P

    Google Scholar 

  • Daval G, Vergé D, Basbaum AI, Bourgoin S, Hamon M (1987): Autoradiographic evidence of serotonin 1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci Lett 83: 71–76

    Google Scholar 

  • De Vivo M, Maayani S (1986): Characterization of the 5-HT1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238: 248–253

    Google Scholar 

  • Devoino LV, Ilyutchenok R Yu (1968): Influence of some drugs on the immune response. Eur J Pharmacol 4: 449–456

    Google Scholar 

  • Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986): Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79

    Google Scholar 

  • Dohlman HG, Caron MG, DeBlasi A, Frielle T, Lefkowitz RJ (1990): A role of extracellular disulfided bonded cysteines in the ligand binding function of the ß2 adrenergic receptor. Biochemistry 29: 2335–2342

    Google Scholar 

  • Dompert WU, Glaser T, Traber J (1985): [3H]-TVX Q 7821: identification of 5-HT1 binding sites as target for a novel putative anxiolytic. Naunyn-Schmiedebergs Arch Pharmacol 328: 467–470

    Google Scholar 

  • Dourish CT, Ahlenius A, Hutson PL, (1987): Brain 5-HT 1A. Chichester, England: Ellis Horwood

    Google Scholar 

  • Dumuis A, Sebben M, Bockaert J (1988a): Pharmacology of 5-hydroxytrypta- mine1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol Pharmacol 33: 176–186

    Google Scholar 

  • Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J (1988b): A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the CNS. Mol Pharmacol 34: 880–887

    Google Scholar 

  • El Mestikawy S, Cognard C, Gozlan H, Hamon M (1988): Pharmacological and biochemical characterization of rat hippocampal 5-hydroxytryptamine1A receptors solubilized by 3[3-(cholamidopropyl)dimethylammonio)]l-propane sulfonate (CHAPS). J Neurochem 51: 1031–1040

    Google Scholar 

  • El Mestikawy S, Taussig D, Gozlan H, Emerit MB, Ponchant M, Hamon M (1989): Chromatographic analysis of the 5-HT1A receptor solubilized from the rat hippocampus. J Neurochem 53: 1555–1566

    Google Scholar 

  • El Mestikawy S, Riad M, Laporte A-M, Vergé D, Daval G, Gozlan H, Hamon M (1990): Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci Lett 118: 189–192

    Google Scholar 

  • El Mestikawy S, Fargin A, Raymond JR, Gozlan H, Hnatowich M (1991): The 5-HT1A receptor: An overview of recent advances. Neurochem Res 16: 1–10

    Google Scholar 

  • Emerit MB, El Mestikawy S, Gozlan H, Cossery JM, Besselièvre R, Marquet A, Hamon M (1987): Identification of the 5-HT1A binding subunit in rat brain membranes using the photoaffinity probe [3H]8-methoxy-2-[AT-rt-propyl, Af-3-(2- nitro-4-azidophenyl)aminopropyl]tetralin. J Neurochem 49: 373–380

    Google Scholar 

  • Emerit MB, Miquel MC, Gozlan H, Hamon M (1991): The GTP-insensitive component of high affinity [3H]-8-hydroxy-2(di-n-propylamino)tetralin binding in the rat hippocampus corresponds to an oxidized state of the 5-HT1A receptor J Neurochem 4956: 1705–1716

    Google Scholar 

  • Ennis C, Kemp JD, Cox B (1981): Characterization of inhibitory 5-HT receptors that modulate dopamine release in the striatum. J Neurochem 36: 1515–1520

    Google Scholar 

  • Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Lefkowitz RJ, Caron MG (1988): The genomic clone G-21 which resembles a ß-adrenergic receptor sequence encodes the human 5-HT1A receptor. Nature 335: 358–360

    Google Scholar 

  • Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989): Second messenger linkages of the 5-HT1A receptor expressed in eukaryotic cells. J Biol Chem 264: 14848–14852

    Google Scholar 

  • Fargin A, Yamamoto K, Cotecchia S, Goldsmith PK, Spiegel AM, Lapetina EG, Caron MG, Lefkowitz RJ (1991): Dual coupling of the cloned 5-HT1A receptor to both adenylyl cyclase and phospholipase C is modulated by the same Gi protein. Cell Signalling 3: 547–557

    Google Scholar 

  • Finch L (1974): Vascular reactivity in hypertensive rats after treatment with antihypertensive agents. Life Sci 15: 1827–1836

    Google Scholar 

  • Fitzgerald L, Titeler M, Glennon RA, Yocca F (1989): Tritiated NAN-190 and tritiated BMY-7378: Antagonist radioligand probes of the brain 5-HT1A receptor. Neurosci Abstr 15: 422

    Google Scholar 

  • Fozard JR, Kilbinger H (1985): 8-OH-DPAT inhibits transmitter release from guinea-pig enteric cholinergic neurones by activating 5-HT1A receptors. Br J Pharmacol 86: 601 P

    Google Scholar 

  • Fraser CM (1989): Site-directed mutagenesis of ß-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J Biol Chem 264: 9266–9270

    Google Scholar 

  • Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987): Cloning of the cDNA for the human ß1-adrenergic receptor. Proc Natl Acad Sci USA 84: 7920–7924

    Google Scholar 

  • Frielle T, Daniel K, Caron MG, Lefkowitz RJ (1988): Structural basis of ß-adrenergic receptor subtype specificity studied with chimeric ß12-adrenergic receptors. Proc Natl Acad Sci USA 85: 9494–9498

    Google Scholar 

  • Gallagher TK, Wang HH (1988): Purification and reconstitution of serotonin receptors from bovine brain. Proc Natl Acad Sci USA 85: 2378–2382

    Google Scholar 

  • Gartride SE, Cowen PJ, Hjorth S (1990): Effecfts of MDL 73005 on central pre- and postsynaptic 5-HT1A receptor function in the rat in vivo. Eur J Pharmacol 191: 391–400

    Google Scholar 

  • Glaser T, Traber J (1985): Binding of the putative anxiolytic TVX Q-7821 to hippocampal 5-hydroxytryptamine (5-HT) recognition sites. Naunyn-Schmiedebergs Arch Pharmacol 329: 211–215

    Google Scholar 

  • Goodwin GM, Green AR (1985): A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84: 743–753

    Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat S, Glowinski J, Hamon M (1983): Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305: 140–142

    Google Scholar 

  • Gozlan H, Emerit MB, Hall MD, Nielsen M, Hamon M (1987): In situ molecular sizes of the various types of 5-HT binding sites in the rat brain. Biochem Pharmacol 35: 1891–1897

    Google Scholar 

  • Gozlan H, Ponchant M, Daval G, Verge G, Menard F, Vanhove A, Beaucort JP, Hamon M (1988a): 125I-Bolton-Hunter-8-methoxy-2-[N-propyl-7V-propylamino]- tetralin as a new selective radioligand of 5-HT1A sites in the rat brain. J Pharmacol Exp Ther 244: 751–759

    Google Scholar 

  • Gozlan H, Emerit MB, El Mestikawy S, Cossery JM, Marquet A, Besselevièvre, Hamon M (1988b): Photoaffinity labeling and solubilization of the central 5-HT1A receptor binding site. J Recept Res 7: 195–221

    Google Scholar 

  • Hall MD, El Mestikawy S, Emerit MB, Pichat L, Hamon M, Gozlan H (1985): [3H]-8-OH-2-di-n-propylamino]tetralin binding to pre- and post-synaptic 5-hydroxytryptamine binding sites in various regions of the rat brain. J Neurochem 44: 1685–1692

    Google Scholar 

  • Hamon M, Fattaccini CM, Adrien J, Gallissot MC, Martin P, Gozlan H (1988): Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-HT1A agonists with potential anxiolytic properties. J Pharmacol Exp Ther 246: 745–752

    Google Scholar 

  • Hamon M, Emerit MB, El Mestikawy S, Gallissot MC, Gozlan H (1990): Regional differences in the transduction mechanisms of serotonin receptors in the mammalian brain. In: Cardiovascular Pharmacology of 5-HT: Prospective Therapeutic Applications, Saxena PR, Wallis D, Woute W, Gevan P eds. Dordrecht: Kluwer Acad Publ, pp. 41–59

    Google Scholar 

  • Hartig PR (1989): Molecular biology of 5-HT receptors. Trends Pharmacol Sci 10: 64–69

    Google Scholar 

  • Hellstrand K, Hermodsson S (1987): Role of serotonin in the regulation of human natural killer cell cytotoxicity. J Immunol 139: 869–875

    Google Scholar 

  • Hellstrand K, Hermodsson S (1987): Enhancement of human natural killer cell cytotoxicity by serotonin: Role of non-T/CD16+ NK cells, accessory monocytes, and 5-HT1A receptors. Cell Immunol 127: 199–14

    Google Scholar 

  • Henning M, Rubenson A (1971): Effects of 5-hydroxytryptophan on arterial blood pressure, body temperature and tissue monoamines in the rat. Acta Pharmacol Toxicol 29: 145–154

    Google Scholar 

  • Herrick-Davis K, Titeler M (1988): [3H]-Spiroxatrine, a 5-HT1A radioligand with agonist binding properties. J Neurochem 50: 528–533

    Google Scholar 

  • Heuring RE, Peroutka SJ (1987): Characterization of a novel [3H]5- hydroxytryptamine binding site in bovine brain membranes. J Neurosci 7: 894–903

    Google Scholar 

  • Hibert M, Moser P (1990): MDL-72382 and MDL-73005, novel, potent and selective 5-HT1A receptor ligands with different pharmacological properties. Drugs Future 15: 159–170

    Google Scholar 

  • Hjorth S, Sharp T (1990) Mixed agonist-antagonist properties of NAN-190 at 5-HT1A receptors behavioral and in-vivo brain microdialysis studies. Life Sci 46: 955–963

    Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985a): Characterization of the 5-HT1B recog-nition site in rat and pig brain membranes: Binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol 118: 1–12

    Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985b): Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, and [3H]mesulergine. Eur J Pharmacol 118: 13–23

    Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376: 85–96

    Google Scholar 

  • Hoyer D (1989): 5-Hydroxytryptamine receptors and effector coupling mechanisms in peripheral tissues. In: Peripheral Actions of 5-HT, Fozard JR, ed. London: Oxford University Press, pp 72–99

    Google Scholar 

  • Hutson PH, Dourish CT, Curzon G (1986): Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. Eur J Pharmacol 129: 347–352

    Google Scholar 

  • Hutson PH, Donohoe TP, Curzon G (1987): Hypothermia induced by the putative 5-HT1A receptor agonists LY 165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol 143: 221–228

    Google Scholar 

  • Inei JR, Meyerson LR (1988): The 5-HT1A receptor probe [3H]-8-OH-DPAT labels the 5-HT transporter in human platelets. Life Sci 42: 311–320

    Google Scholar 

  • Invernizzi RW, Cervo L, Samanin R (1988): 8-Hydroxy-2-(di-n-propylamin) tetralin, a selective serotonin 1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27: 515–518

    Google Scholar 

  • Joels M, Shinnick-Gallagher P, Gallagher JP (1987): Effect of serotonin and serotonin analogues on passive membrane properties of lateral septal neurons in vitro. Brain Res 417: 99–107

    Google Scholar 

  • Kalkman HO, Engel G, Hoyer D (1984): Three distinct subtypes of serotonergic receptors mediate the triphasic blood pressure response to serotonin in rats. J Hypertension 2 (suppl 3): 143–145

    Google Scholar 

  • Karnik SS, Sakmar TP, Chen H-B, Khorana HG (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 85: 8459–8463

    Google Scholar 

  • Karschin A, Ho BY, LaBarca C, Elroy-Stein O, Moss B, Davidson N, Lester H (1991): Heterologously expressed serotonin 1A receptors couple to muscarinic K + channels in heart. Proc Natl Acad Sci USA 88: 5694–5698

    Google Scholar 

  • Kennett GA, Marcou M, Dourish CT, Curzon G (1987): Single administration of 5-HT1A agonists decreases 5-HT1A presynaptic, but not postsynaptic receptormediated responses: Relationship to antidepressant-like action. Eur J Pharmacol 138: 53–60

    Google Scholar 

  • Kilbinger H, Pfeuffer-Friedrich I (1985): Two types of receptors for 5-hydroxytryptamine on the cholinergic nerves of the guinea-pig myenteric plexus. Br J Pharmacol 85: 529–539

    Google Scholar 

  • Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng T, Francke U, Caron MG, Lefkowitz RJ (1987a): cDNA for the human ß2-adrenergic receptor: A protein with multiple membrane-spanning domains encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84: 46–50

    Google Scholar 

  • Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987b): Identification of an intronless gene which encodes a potential member of the family of G protein-coupled receptors. Nature 329: 75–79

    Google Scholar 

  • Kobilka BK, Kobilka TS, Daniel KW, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric α22-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240: 1310–1316

    Google Scholar 

  • Kwong LL, Smith ER, Davidson JM, Peroutka SJ (1986): Differential interactions of “prosexual” drugs with 5-hydroxytryptamine1A and α2-adrenergic receptors. Behav Neurosci 100: 664–668

    Google Scholar 

  • Kyte J, Doolittle RF (1982): A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132

    Google Scholar 

  • Lanier SM, Homey CJ, Patenaude C, and Graham RM (1988): Identification of structurally distinct α2-adrenergic receptors. J Biol Chem 263: 14491–14496

    Google Scholar 

  • Leonhardt S, Herrick-Davis K, Titeler M (1989): Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: Interaction with a GTP-binding protein. JNeurochem 53: 465–471

    Google Scholar 

  • Lespinats G, Bonnett M, Tlouzeau S, Burtin C (1984): Enhancement by serotonin of intra-tumour penetration of spleen cells. Br J Cancer 50: 545–547

    Google Scholar 

  • Leysen JE, Tollenaere JP, Koch MHJ, Laduron P (1977): Differentiation of opiate and neuroleptic receptor binding in rat brain. Eur J Pharmacol 43: 253–267

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1979): Serotonergic component of neuroleptic receptors. Nature 272: 169–171

    Google Scholar 

  • Leysen JE (1989): The use of 5-HT receptor agonists and antagonists for the characterization of their respective sites. In: Neuromethods, Neuropharmacology II: Drugs as Tools in Neurotransmitter Research, Boulton AA, Baker GB, Jourio AV, Clifton, N.J.: Humana Press, pp 299–350

    Google Scholar 

  • Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, Simons M-J, Dumont JE, Vassart, G (1989): Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244: 569–572

    Google Scholar 

  • Limbird LE (1988): Receptors linked to inhibition of adenylate cyclase: Additional signaling mechanisms. FASEB J 2: 2686–2695

    Google Scholar 

  • Liu YF, Albert PR (1991): Cell-specific signaling of the 5-HT1A receptor. J Biol Chem 266: 23689–23697

    Google Scholar 

  • Lucki I, Nobler MS, Frazer A (1983): Differential actions of serotonin antagonists on two behavioral models of seroronin receptor activation in the rat. J Pharmacol Exp Ther 228: 133–139

    Google Scholar 

  • Makman MH, Dvorkin B, Crain SM (1988): Modulation of adenylate cyclase activity of mouse spinal cord-ganglion expiants by opioids, serotonin and pertussis toxin. Brain Res 445: 303–313

    Google Scholar 

  • Mangel A, Raymond JR, Fitz JG (1992): Co-regulation of high conductance anion channels by GTP-binding proteins in CHO cells. Submitted

    Google Scholar 

  • Marcinkiewicz M, Vergé D, Gozlan H, Pichat L, Hamon M (1984): Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291: 159–163

    Google Scholar 

  • Markstein R, Hoyer D, Engel G (1986): 5-HT1A receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 333: 335–341

    Google Scholar 

  • Martin KF, Mason R (1987): Ipsapirone is a partial agonist at 5-hydroxytryptamine1A (5-HT1A) receptors in the rat hippocampus: Electrophysiological evidence. Eur J Pharmacol 141: 479–483

    Google Scholar 

  • Mawe GM, Branchek TA, Gershon MD (1986): Peripheral neural serotonin receptors: Identification and characterization with specific antagonists and agonists. Proc Natl Acad Sci USA 83: 9799–9803

    Google Scholar 

  • McCall RB, Patel BN, Harris LT (1987): Effects of serotonin 1 and 2 receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity. J Pharmacol Exp Ther 242: 1152–1159

    Google Scholar 

  • Middlemiss DN, Neill J, Tricklebank MD (1985): Subtypes of the 5-HT receptor involved in hypothermia and forepaw treading produced by 8-OH-DPAT. Br J Pharmacol 85: 25 I P

    Google Scholar 

  • Middlemiss DN, Fozard JR (1983): 8-OH-2-(di-n-propylamino)tetralin discriminates between subtypes of 5-HT recognition sites. Eur J Pharmacol 90: 151–153

    Google Scholar 

  • Middleton JP, Raymond JR, Whorton ARR, Dennis VW (1990): Short-term regulation of Na+/K + adenosine triphosphatase by recombinant human serotonin 5-HT1A receptor expressed in HeLa cells. J Clin Invest 86: 1799–1805

    Google Scholar 

  • Minchin MCW, Godfrey PP, McClue SJ, Young MM (1985): 8-OH-DPAT stimulates inositol phospholipid breakdown in rat cerebral cortical slices. J Neurochem 44(suppl):S49

    Google Scholar 

  • Mir AK, Hibert M, Tricklebank MD, Middlemiss DN, Kidd EJ, Fozard JR (1988): MDL 72832: A potent and stereoselective ligand at central and peripheral 5-HT1A receptors. Eur J Pharmacol 149: 107–120

    Google Scholar 

  • Moon SL, Taylor DP (1985): In vitro autoradiography of 3H-buspirone and 3H-2-deoxyglucose after buspirone administration. Soc Neurosci Abstr 11: 114

    Google Scholar 

  • Moser PC, Ticklebank MD, Middlemiss DN, Mir AK, Hibert MF and Fozard JR (1990): Characterization of MDL-73005 as a 5-HT1A selective ligand and its effects in animal models of anxiety: Comparison with buspirone, 8-hydroxy- DPAT and diazepam. Br J Pharmacol 99: 343–349

    Google Scholar 

  • Müller-Schwenitzer E, Engel G (1983): Evidence for mediation by 5-HT2 receptors of 5-hydroxytryptamine-induced contraction of canine basilar artery. Naunyn-Schmiedebergs Arch Pharmacol 327: 18–22

    Google Scholar 

  • Nelson DL, Monroe PJ, Lambert G, Yamamura HI (1987): [3H]-Spiroxatrine labels serotonin 1A-like sites in the rat hippocampus. Life Sci 41: 1567–1576

    Google Scholar 

  • Newberry NR, Priestly T (1988): A 5-HTl-like receptor mediates a pertussis toxin-sensitive inhibition of rat ventromedial hypothalamic neurones in vitro. Br J Pharmacol 95: 6–8

    Google Scholar 

  • Niemegeers CJE, Verbruggen FJ, Van Neuten JM, Janssen PA J (1964): Spiroxamide (R 5188): A new compound producing morphine-like and chlorpromazine- like effects in animals. Int J Neuropharmacol 2: 349–354

    Google Scholar 

  • Norman AB, Battaglia G, Creese I (1985): [3H]WB4101 labels the 5-HT1A receptor subtype in rat brain. Mol Pharmacol 28: 487–494

    Google Scholar 

  • O’Dowd BF, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989): Palmitoylation of the human ß 2-adrenergic receptor. J Biol Chem 264: 7564–7569

    Google Scholar 

  • Oliveras JL, Redjemi F, Guibaud G, Besson JM (1975): Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145

    Google Scholar 

  • Ovchinnikov YA, Adulaev NG, Bogachuk AS (1988): Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230: 1–5

    Google Scholar 

  • Page IH (1952): The vascular action of natural serotonin, 5- and 7-hydroxytryptamine and tryptamine. J Pharmacol Exp Ther 105: 58–73

    Google Scholar 

  • Palacios JM, Pazos A, Hoyer D (1987): Characterization and mapping of 5-HT1A sites in the brain of animals and man. In: Brain 5-HT1A Receptors. Dourish CT, Ahlenius A, Hutson PH, eds. Chichester: Ellis Horwood, pp 67–81

    Google Scholar 

  • Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in the human brain. III. Autoradiographic mapping serotonin-1 receptors. NeuroScience 21: 97–122

    Google Scholar 

  • Pedigo NW, Yamamura HI, Nelson DL (1981): Discrimination of multiple [3H]-5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226

    Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Ramachandran JS, Capon DJ (1988): Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334: 434–437

    Google Scholar 

  • Peroutka SJ, Snyder SH (1979): Multiple serotonin receptors: Differential binding of [3H]-5-hydroxytryptamine, [3H]-lysergic acid diethylamide and [3H]-spiroperidol. Mol Pharmacol 16: 687–699

    Google Scholar 

  • Peroutka SJ, Huang S, Allen GS (1986): Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther 237: 901–906

    Google Scholar 

  • Peroutka SJ (1987a): Serotonin receptors. In: Psychopharmacology: The Third Generation of Progress, Meltzer H, ed. New York: Raven Press, pp 303–311

    Google Scholar 

  • Peroutka SJ, Mauk MD, Kocsis JD (1987b): Modulation of hippocampal neuronal activity by 5-hydroxytryptamine and 5-hydroxytryptamine1A selective drugs. Neuropharmacology 26: 139–146

    Google Scholar 

  • Pfeuffer-Friedrich I, Kilbinger H (1985): The effect of LSD in the guinea-pig ileum. Inhibition of acetylcholine release and stimulation of smooth muscle. Naunyn- Schmiedebergs Arch Pharmacol 331: 311–315

    Google Scholar 

  • Przeglinksi E, Ismaiel AM, Chojnacka-Wojcik B, Budziszewska B, Tatarcynska D, Blaszcynska E (1990): The behavioral, but not the hypothermic or cortisone response to 8-hydroxy-2-(di-N-propylamino)-tetralin, is antagonized by NAN-190 in the rat. Neuropharmacology 29: 521–526

    Google Scholar 

  • Ransom RW, Asarch KB, Shih J (1986a): [3H]l-[2-(4-aminophenyl)ethyl]-4-(3- trifluoromethylphenyl)piperazine: A selective radioligand for 5-HT1A receptors in rat brain. J Neurochem 46: 68–75

    Google Scholar 

  • Ransom RW, Asarch KB, Shih J (1986b): Photoaffinity labeling of the 5-hydroxytryptamine1A receptor in rat hippocampus. J Neurochem 47: 1066–1072

    Google Scholar 

  • Raymond JR, Fargin A, Lohse M, Senogles S, Regan JW, Lefkowitz RJ, Caron MG (1989a): Identification of the ligand binding subunit of the human 5-HT1A receptor. Mol Pharmacol 36: 15–21

    Google Scholar 

  • Raymond JR, Fargin AF, Middleton JP, Graff JM, Haupt DM, Caron MG, Lefkowitz RJ, Dennis VW (1989b): The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. J Biol Chem 264: 21943–21950

    Google Scholar 

  • Raymond JR, Hnatowich M, Lefkowitz RJ, Caron MG (1989c): Adrenergic receptors: Models for the regulation of signal transduction processes. Hypertension 15: 119–131

    Google Scholar 

  • Raymond JR, Albers FJ, Middleton JP, Lefkowitz RJ, Caron MG, Obeid LM, Dennis VW (1991a): 5-HT1A and histamine H1 receptors expressed in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J Biol Chem 266: 372–379

    Google Scholar 

  • Raymond JR (1991): Protein kinase C induces phosphorylation and desensitization of the human 5-HT1A receptor J Biol Chem 266: 14747–14753

    Google Scholar 

  • Raymond JR, Albers FJ, Middleton JP (1992): Functional expression of human 5-HT1A receptors and differential coupling to second messengers in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, (in press)

    Google Scholar 

  • Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988): Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA. 85: 6301–6305

    Google Scholar 

  • Richardson BP, Engel G. (1986): The pharmacology and function of 5-HT3 receptors. Trends Neurosci 7: 424–428

    Google Scholar 

  • Rydelek-Fitzgerald L, Teitler M, Fletcher PW, Ismaiel AM, Glennon RA (1990): NAN-190, agonist and antagonist interactions with brain 5-HT1A receptors. Brain Res 532: 191–196

    Google Scholar 

  • Saxena PR, Verdouw PD (1985): 5-Carboxyamide tryptamine, a compound with high affinity for 5-HT1 binding sites, dilates arterioles and constricts arteriovenous anastomoses. Br J Pharmacol 84: 533–544

    Google Scholar 

  • Saxena PR, Lawang A (1985): A comparison of cardiovascular and smooth muscle effects of 5-HT and 5-CT, a selective agonist of 5-HT1 receptors. Arch Int Pharmacodyn Ther 277: 235–252

    Google Scholar 

  • Saxena PR, Villalon CM (1990): Brain 5-HT1A receptor agonism: A novel mechanism for antihypertensive action. Trends Pharmacol Sci 11: 95–96

    Google Scholar 

  • Schoeffter P, Hoyer D (1988): Centrally acting hypotensive agents with affinity to 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br J Pharmacol 95: 975–985

    Google Scholar 

  • Schoemaker H, Langer SZ (1986): [3H]-8-OH-DPAT labels the serotonin transporter in rat striatum. Eur J Pharmacol 124: 371–373

    Google Scholar 

  • Sharp T, Beckus LI, Hjorth S, Bramwell SR, Grahame-Smith DG (1990): Further investigation of the in vivo pharmacological properties of the putative 5-HT1A antagonist, BMY 7378. Eur J Pharmacol 176: 331–340

    Google Scholar 

  • Shenker A, Maayani S, Weinstein H, Green JP (1985): Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur J Pharmacol 109: 427–429

    Google Scholar 

  • Sigal IS, Dixon RAF, Strader CD (1988): Molecular biology of adrenergic receptors. ISI Atlas Sci: Pharmacol 2: 387–391

    Google Scholar 

  • Sinton CM, Fallon SL (1986): Differences in responses of dorsal and median raphe serotonergic neurons to 5-HT1 receptor ligands. Soc Neurosci Abstr 12: 1239

    Google Scholar 

  • Smith LM, Peroutka SJ (1986): Differential effects of 5-hydroxytryptamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24: 1513–1519

    Google Scholar 

  • Sprouse JS, Aghajanian GK (1987): Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9

    Google Scholar 

  • Sternberg EM, Wedner HJ, Leung MK, Parker CW (1987): Effect of 5-HT and other monoamines on murine macrophages. J Immunol 138: 4360–4365

    Google Scholar 

  • Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF (1989): Identification of two serine residues involved in agonist activation of the ß-adrenergic receptor. J Biol Chem 264: 13572–13578

    Google Scholar 

  • Taylor EW, Duckies SP, Nelson DL (1986): Dissociation constants of serotonin agonists in the canine basilar artery correlate to Ki values at the 5-HT1A binding site. J Pharmacol Exp Ther 236: 118–125

    Google Scholar 

  • Traber J, Glaser T (1987): 5-HT1A receptor-related anxiolytics. Trends Pharmacol Sci 8: 432–437

    Google Scholar 

  • Tricklebank MD, Forler C, Fozard JR (1985): The involvement of subtypes of the 5-HT1 receptor and of the catecholaminergic systems in the behavioral responses to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106: 271–282

    Google Scholar 

  • Tricklebank MD (1985): The behavioural response of 5-HT receptor agonists and subtypes of the central 5-HT receptor. Trends Pharmacol Sci 6: 403–407

    Google Scholar 

  • Trulson ME, Aresteh K (1986): Buspirone decreases the action of 5-hydroxytryptamine-containing dorsal raphe neurons in vitro. J Pharm Pharmacol 38: 380–382

    Google Scholar 

  • VanderMaelen CP, Matheson GK, Wilderman RC, Patterson LA (1986): Inhibition of serotonergic dorsal raphe neurons by systematic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol 129: 123–130

    Google Scholar 

  • Vanhoutte PM, Cohen RA, Van Neuten JM (1984): Serotonin and arterial vessels. J Cardiovasc Pharmacol 6 (suppl 6): S421–S428

    Google Scholar 

  • Van Nueten JM, Leysen JE, De Clerck F, Vanhoutte PM (1984): Serotonergic receptor subtypes and vascular reactivity. J Cardiovasc Pharmacol 6 (suppl 4): S564–S574

    Google Scholar 

  • Vergé D, Daval G, Marcinkiewicz, Patey A, El Mestikawy S, Gozlan H, Hamon M (1986): Q: Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J Neurosci 6: 3474–3482

    Google Scholar 

  • Vergé D, Daval G, Patey A, Gozlan H, El Mestikawy S, Hamon M (1985): Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113: 463–464

    Google Scholar 

  • Webb RC (1982): Increased vascular sensitivity to 5-HT and methysergide in hypertension in rats. Clin Sci 63: 73s

    Google Scholar 

  • Weissmann-Nanopoulos D, Mach E, Magre J, Demassey Y, Pujol JF (1985): Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem Int 7: 1061–1072

    Google Scholar 

  • Weiss S, Sebben M, Kemp DE, Bockaert J (1986): Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur J Pharmacol 120: 227–230

    Google Scholar 

  • Wilkinson LO, Abercrombie ED, Rasmussen K, Jacobs BL (1987): Effect of buspirone on single unit activity in locus coeruleus and dorsal raphe nucleus in behaving cats. Eur J Pharmacol 136: 123–127

    Google Scholar 

  • Yocca FD, Hyslop DK, Smith DW, Maayani S (1987): BMY 7378, a buspirone analog with high affinity, selectivity, and low intrinsic activity at the 5-HT1A receptor in rat and guinea-pig hippocampal membranes. Eur J Pharmacol 137: 293–294

    Google Scholar 

  • Yocca FD (1990): Neurochemistry and neurophysiology of buspirone and gepirone: Interactions at presynaptic and postsynaptic 5-HT1A receptors. J Clin Psycho-pharmacol 10: 6S–12S

    Google Scholar 

  • Zemlan FP, Zieleniewski-Murphy A, Murphy RM, Behbahani MM (1990): BMY-7378: Partial agonist at spinal cord 5-HT1A receptors. Neurochem Int 16: 515–522

    Google Scholar 

  • Zgombick JM, Beck SG, Mahle CD, Craddock-Royal B, Maayani S (1989): Pertussis toxin-sensitive guanine nucleotide-binding proteins couple adenosine A1 and 5-hydroxytryptaminelA receptors to the same effector systems in rat hippocampus: Biochemical and electrophysiological studies. Mol Pharmacol 35: 484–494

    Google Scholar 

  • Zgombick JM, Weinshank RL, Macchi M, Schecter LE, Branche KT, Hartig P (1991): Expression and pharmacological characterization of a canine 5-HT1D receptor subtype. Mol Pharmacol 40: 1036–1042

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Raymond, J.R., El Mestikawy, S., Fargin, A. (1992). The 5-HT1A Receptor: From Molecular Characteristics to Clinical Correlates. In: Brann, M.R. (eds) Molecular Biology of G-Protein-Coupled Receptors. Applications of Molecular Genetics to Pharmacology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6772-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6772-7_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6774-1

  • Online ISBN: 978-1-4684-6772-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics