Skip to main content

Structural, Functional, and Genetic Aspects of Receptors Coupled to G-Proteins

  • Chapter

Part of the book series: Applications of Molecular Genetics to Pharmacology ((AMGP))

Abstract

A remarkably diverse array of biologically active substances elicit their actions by interacting with Cell surface receptors which are coupled via guanine nucleotide regulatory proteins (G-proteins) to specific biochemical effectors. Examples include neurotransmitters, hormones, many drugs, and even sensory stimuli such as light and odorants. Perhaps the most thoroughly studied example of such a receptor system is the β2-adrenergic receptor for catecholamines which mediates stimulation of adenylyl cyclase via Gs. Within the past few years its primary structure has become known via molecular cloning, and substantial progress has also been made in learning how its unique structural features determine such specific functions as ligand binding and G-protein activation. Much has also been learned about the mechanisms by which its function is regulated. Moreover, a great deal of this information appears to be generally applicable to the other members of the broad family of G-protein-coupled receptors. This chapter reviews some of the most important information developed over the past several years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JM, Baetge EE, Abrass IB, Palmiter RD (1988): Isoproterenol response following transfection of the mouse ß 2-adrenergic receptor gene into Y1 Cells. EMBO 7 7: 133–138

    Google Scholar 

  • Applebury ML, Hargrave PA (1986): Molecular biology of the visual pigments. Vision Res 26: 1881–1895

    Article  Google Scholar 

  • Bach R, Königsberg WH, Nemerson Y (1988): Human tissue factor contains thioester-linked palmitate and stearate on the cytoplasmic half-cystine. Biochemistry 27: 4227–4231

    Article  Google Scholar 

  • Benovic JL, Pike LJ, Cerione RA, Staniszewski C, Yoshimasa T, Codina J, Birnbaumer L, Caron MG, Lefkowitz RJ (1985): Phosphorylation of the mammalian ß-adrenergic receptor by cyclic AMP-dependent protein kinase: Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J Biol Chem 260: 7094–7101

    Google Scholar 

  • Benovic JL, Mayor F Jr, Somers RL, Caron MG, Lefkowitz RJ (1986a): Light-dependent phosphorylation of rhodopsin by ß-adrenergic receptor kinase. Nature 321: 869–872

    Article  Google Scholar 

  • Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986b): ß-Adrenergic receptor kinase: Identification of a novel protein kinase which phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA 83: 2797–2801

    Article  Google Scholar 

  • Benovic JL, Kuhn H, Weyland I, Codina J, Caron MG, Lefkowitz RJ (1987a): Functional desensitization of the isolated ß-adrenergic receptor by the ß-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48 kDa protein). Proc Natl Acad Sci USA 84: 8879–8882

    Article  Google Scholar 

  • Benovic JL, Regan JW, Matsui H, Mayor FM Jr, Cotecchia S, Leeb-Lundberg LMF, Caron MG, Lefkowitz RJ (1987b): Agonist-dependent phosphorylation of the o:2-adrenergic receptor by the ß-adrenergic receptor kinase. J Biol Chem 262: 17251–17253

    Google Scholar 

  • Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ (1988): Regulation of adenylyl cyclase-coupled ß-adrenergic receptors. Annu Rev Cell Biol 4: 405–428

    Article  Google Scholar 

  • Benovic JL, Stone WC, Caron MG, Lefkowitz RJ (1989a): Inhibition of the ß-adrenergic receptor kinase by polyanions. J Biol Chem 264: 670–6710

    Google Scholar 

  • Benovic JL, DeBlasi A, Stone WC, Caron MG, Lefkowitz RJ (1989b): ß 3-Adrenergic receptor kinase: Primary structure delineates a multigene family. Science 246: 235–240

    Article  Google Scholar 

  • Bouvier M, Leeb-Lundberg LM, Benovic JL, Caron MG, Lefkowitz RJ (1987): Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of a1 and ß-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem 262: 3106–3113

    Google Scholar 

  • Bouvier M, Hausdorff WP, DeBlasi A, O’Dowd BF, Kobilka BK, Caron MB, Lefkowitz RJ (1988): Mutations of the ß-adrenergic receptor which remove phosphorylation sites delay the onset of agonist promoted desensitization. Nature 333: 370–373

    Article  Google Scholar 

  • Bouvier M, Collins S, O’Dowd BF, Campbell PT, DeBlasi A, Kobilka BK, MacGregor C, Irons GP, Caron MG, Lefkowitz RJ (1989): Two distinct pathways for cAMP mediated down regulation of the 02-adrenergic receptor: Phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 264: 16786–16792

    Google Scholar 

  • Cheung AH, Sigal IS, Dixon RAF, Strader CD (1988): Agonist-promoted sequestration of the ß 32-adrenergic receptor requires regions involved in functional coupling with Gs. Mol Pharmacol 34: 132–128

    Google Scholar 

  • Chin DJ, Gil G, Russell DW, Liscum L, Luskey KL, Basu SK, Okayama H, Berg P, Goldstein JL, Brown MS (1984): Nucleotide sequence of 3-hydroxy-3-methyl- glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature 30: 613–617

    Article  Google Scholar 

  • Chuang DM, Costa E (1979): Evidence for internalization of the recognition site of ß 3-adrenergic receptors during receptor subsensitivity induced by (-isoproterenol. Proc Natl Acad Sci USA 76: 3024–3028

    Article  Google Scholar 

  • Chuang DM, Kinnier WJ, Farber L, Costa E (1980): A biochemical study of receptor internalization during ß-adrenergic receptor desensitization in frog erythrocytes. Mol Pharmacol 18: 348–355

    Google Scholar 

  • Clark RB, Friedman S, Prashad N, Kuoho AE (1985): Epinephrine induced sequestration of the ßAR in cultured S49-WT cyc- lymphoma. J Cyclic Nucleotide Protein Phosphor Res 10: 97–119

    Google Scholar 

  • Clark RB, Kunkel MW, Friedman J, Coka TS, Johnson JA (1988): Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma Cells. Proc Natl Acad Sci USA 85: 1442 - 1446

    Article  Google Scholar 

  • Collins S, Bouvier M, Bolanowski MA, Caron MG, Lefkowitz RJ (1989): Cyclic AMP stimulates transcription of the ß 2-adrenergic receptor gene in response to short term agonist exposure. Proc Natl Acad Sci USA 86: 4853–4857

    Article  Google Scholar 

  • Collins S, Altschmied J, Herbsmen O, Caron MG, Mellon PL, Lefkowitz RJ (1990): Cyclic AMP response element in the ß 2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J Biol Chem 265: 19330–19335

    Google Scholar 

  • DeLean A, Stadel JM, Lefkowitz RJ (1980): A ternary complex model explains the agonist-specific binding properties of the adenylate-cyclase coupled ß 3-adrenergic receptor. J Biol Chem 255: 7108–7117

    Google Scholar 

  • Dixon RAF, Sigal IS, Candelore MR, Register RB, Scattergood W, Rands E, Strader CD (1987): Structural features required for ligand binding to the ß-adrenergic receptor. EMBO J 6: 3269–3275

    Google Scholar 

  • Dohlman HG, Bouvier M, Benovic JL, Caron MG, Lefkowitz RJ (1987): The multiple membrane spanning topography of the ß-adrenergic receptor. Localization of the sites of binding, glycosylation and regulatory phosphorylation by limited proteolysis. J Biol Chem 262: 14282–14288

    Google Scholar 

  • Dohlman HG, Caron MG, DeBlasi A, Frielle T, Lefkowitz RJ (1990): Role of extraCellular disulfide-bonded cysteines in the ligand binding function of the ß 2-adrenergic receptor. Biochemistry 29: 2335–2342

    Article  Google Scholar 

  • Doss RC, Perkins JP, Harden TK (1981): Recovery of ß-adrenergic receptor following long term exposure of astrocytoma Cells to catecholamine: Role of protein synthesis. J Biol Chem 256: 12281–12286

    Google Scholar 

  • Dunn R, McCoy J, Simsek M, Majumdar A, Chang SH, Rajbhandary UL, Khorana HG (1981): The bacteriorhodopsin gene. Proc Natl Acad Sci USA 78: 6744–6748

    Article  Google Scholar 

  • Frederich RC Jr, Waldo GL, Harden TK, Perkins JP (1983): Characterization of agonist-induced ß-adrenergic receptor specific desensitization in C62B glioma Cells. J Cyclic Nucleotide Protein Phosphor Res 9: 103–118

    Google Scholar 

  • Gonzalez GA, Montminy MR (1989): Cyclic AMP stimulates somatostatin gene transcription by phosphorylational CREB at serine 133. Cell 59: 675–580

    Article  Google Scholar 

  • Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs WH III, Vale WW, Montminy MR (1989): A cluster of phosphorylation sites on the cAMP- regulated factor CREB predicted by its sequence. Nature 337: 749–752

    Article  Google Scholar 

  • Gorman C (1985): High efficiency gene transfer into mammalian Cells. In: DNA Cloning, Volume II, Glower DM, ed. IRL Press Ltd. Hadcock JR, Malbon CC (1988): Down-regulation of ß3-adrenergic receptors: Agonist-induced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 85: 5021–5025

    Google Scholar 

  • Hadcock JR, Ros M, Malbon CC (1989a): Agonist regulation of ß-adrenergic receptor mRNA. Analysis in S49 mouse lymphoma mutants. J Biol Chem 264: 13956–13961

    Google Scholar 

  • Hadcock JR, Wang H, Malbon CC (1989b): Agonist-induced destabilization of ß-adrenergic receptor mRNA. Attenuation of glucocorticoid induced u-regulation of ß-adrenergic receptors. J Biol Chem 264: 19928–19933

    Google Scholar 

  • Harden TK, Cotton CV, Waldo GL, Lutton JK, Perkins JP (1980): Catecholamine- induced alteration in sedimentation behavior of membrane bound ß-adrenergic receptors. Science 210: 441–443

    Article  Google Scholar 

  • Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG, Lefkowitz RJ (1989): Phosphorylation sites on two domains of the ß 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem 264: 12657–12665

    Google Scholar 

  • Henderson R, Unwin PN (1975): Three dimensional model of purple membranes obtained by electron microscopy. Nature 257: 28–32

    Article  Google Scholar 

  • Hertel C, Muller P, Portenier M, Staehelin M (1983): Determination of the desensitization of ß-adrenergic receptors by [3H]CGP-12177. Biochem J 216: 669–674

    Google Scholar 

  • Hertel C, Coulter SJ, Perkins JP (1985): Comparison of catecholamine-induced internalization of adrenergic receptors and receptor-mediated endocytosis of epidermal growth factor in human astrocytoma Cells: Inhibition by phenylarsine oxide. J Biol Chem 260: 12547–12553

    Google Scholar 

  • Hertel C, Coulter SJ, Perkins JP (1986): The involvement of Cellular ATP in receptor-mediated internalization of epidermal growth factor and hormone- induced internalization of ß 3-adrenergic receptors. J Biol Chem 261: 5974–5980

    Google Scholar 

  • Hod Y, Hanson RW (1988): Cyclic AMP stabilizes the mRNA for phosphoenol pyruvate carboxykinase (GTP) agonist degradation. J Biol Chem 263: 7747–7752

    Google Scholar 

  • Hoeffler JP, Meyer TE, Yun Y, Jameson JL, Habener JF (1988): Cyclic AMP- responsive DNA-binding protein-structure based on a cloned placental cDNA. Science 242: 1430–1433

    Article  Google Scholar 

  • Homburger V, Lucase M, Cantau B, Perit J, Bockaert J (1980): Further evidence that desensitization of ß-adrenergic sensitive adenylyl cyclase proceeds in two steps: Modification of the coupling and loss of ß-adrenergic receptor. J Biol Chem 255: 10436–10444

    Google Scholar 

  • Homburger V, Pantaloni C, Lucas M, Coglan H, Bockaert J (1984): ß-Adrenergic receptor repopulation of C6 glioma Cells after irreversible blockade and down regulation. J Cell Physiol 121: 589–597

    Article  Google Scholar 

  • Imagawa M, Chiu R, Karin M (1987): Transcription factor AP-2 mediates induction by two different signal transduction pathways: protein kinase C and cAMP. Cell 51: 251–260

    Article  Google Scholar 

  • Insel PA, Mahan LL, Motulsky HJ, Stoolman LM, Koachman AM (1983): Time dependent decrease in binding affinity of agonist for ß3-adrenergic receptors of intact S49 lymphoma Cells: A mechanism of desensitization. J Biol Chem 258: 13597–13605

    Google Scholar 

  • Jackson TR, Blair LAC, Marshall J, Goedert M, Hanley MR (1988): The mas oncogene encodes an angiotensin receptor. Nature 335: 437–440

    Article  Google Scholar 

  • Jarvie KR, Niznik HB, Seeman P (1988): Dopamine D2 receptor binding subunits of Mr ≈ 140,000 and 94,000 in brain: Deglycosylation yields a common unit of Mr ≈ 44,000. Mol Pharmacol 34: 91–97

    Google Scholar 

  • Jarvie KR, Niznik HB (1989): Deglycosylation and proteolysis of photolabeled D2 dopamine receptors of the porcine anterior pituitary. J Biochem 106: 17–22

    Google Scholar 

  • Jungmann RA, Kelley DC, Miles MF, Milkowski DM (1983): Cyclic AMP regulation of lactate dehydrogenease. J Biol Chem 258: 5312–5318

    Google Scholar 

  • Kassis S, Fishman PH (1984): Functional alteration of the ß-adrenergic receptor during desensitization of mammalian adenylyl cyclase by ß-agonist. Proc Natl Acad Sci USA 81: 6686–6690

    Article  Google Scholar 

  • Kassis S, Sullivan M (1986): Desensitization of the mammalian ß-adrenergic receptor: Analysis of receptor redistribution on nonlinear sucrose gradients. J Cyclic Nucleotide Protein Phosphor Res 11: 35–46

    Google Scholar 

  • Kobilka BK, MacGregor C, Daniel K, Kobilka TS, Caron MG, Lefkowitz RJ (1987a): Functional activity and regulations of human ß-adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 262: 15796–15802

    Google Scholar 

  • Kobilka BK, Frielle T, Dohlman HG, Bolanowski MA, Dixon RAF, Keller P, Caron MG, Lefkowitz RJ (1987b): Delineation of the intronless Nature of the genes for the human and hamster ß2-adrenergic receptor and their putative promoter regions. J Biol Chem 262: 7321–7327

    Google Scholar 

  • Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric a2-ß 2-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240: 1310–1316

    Article  Google Scholar 

  • Kubo T, Bujo H, Akiba I, Nakai J, Mishina M, Numa S (1988): Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett 241: 119–125

    Article  Google Scholar 

  • Kuhn H, Dreyer WJ (1972): Light-dependent phosphorylation of rhodopsin by ATP. FEBS Lett 20: 1–6

    Article  Google Scholar 

  • Kwatra MM, Benovic JL, Caron MG, Lefkowitz RJ, Hosey MM (1989): Phosphorylation of chick heart muscarinic cholinergic receptors by the ß-adrenergic receptor kinase. Biochemistry 28: 4543–4547

    Article  Google Scholar 

  • Lanier SM, Homey CJ, Patenaude C, Graham RM (1988): Identification of structurally distinct α2-adrenergic receptors. J Biol Chem 263: 14491–14496

    Google Scholar 

  • Lefkowitz RJ (1979): Direct radioligand binding studies of adrenergic receptors: Biochemical, physiological and clinical implications. Ann Intern Med 91: 450–558

    Google Scholar 

  • Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande JV, Maenhaut C, Simons M-J, Dumont JE, Vassart G (1989): Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244: 569–572

    Article  Google Scholar 

  • Lohse MJ, Lefkowitz RJ, Caron MG, Benovic JL (1989): Inhibition of ß-adrenergic receptor kinase prevents homologous desensitization of ß 2-adrenergic receptors. Proc Natl Acad Sci USA 86: 3011–3015

    Article  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990): ß-Arrestin: A protein that regulates ß-adrenergic receptor function. Science 248: 1547–1550

    Article  Google Scholar 

  • Mahan LC, Koachman AM, Insel PA (1985): Genetic analysis of ß-adrenergic receptor internalization and downregulation. Proc Natl Acad Sci USA 82: 129–133

    Article  Google Scholar 

  • Mahan LC, Insel PA (1986): Expression of ß-adrenergic receptors in synchronous and asynchronous S49 lymphoma Cells. I. Receptor metabolism after irreversible blockade of receptors and in Cells traversing the Cell cyclase. Mol Pharmacol 29: 7–15

    Google Scholar 

  • Marshema I, Thompson WS, Robinson GA, Strada JJ (1980): Loss and restoration of sensitivity to epinephrine in cultured BHK Cells: Effect of inhibition of RNA and protein synthesis. Mol Pharmacol 18: 370–378

    Google Scholar 

  • Mattera R, Graziano MP, Yattani A, Zhov Z, Graf R, Codina J, Birnbaumer L, Gilman A, Brown AM (1989): Splice variants of the a subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science 243: 804–807

    Article  Google Scholar 

  • Nakada MT, Haskell KM, Ecker DJ, Stadel JM, Crooke ST (1989): Genetic regulation of ß-adrenergic receptors in 3T3-L1 fibroblasts. Biochem 7260: 53–59

    Google Scholar 

  • Nakayama N, Miyajima A, Arai K (1985): Nucleotide sequences of STE2 and STE3, Cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4: 2643–2648

    Google Scholar 

  • Nambi P, Peters JR, Sibley DR, Lefkowitz RJ (1985): Desensitization of the turkey erythrocyte ß-adrenergic receptor in a Cell-free system: Evidence that multiple protein kinases can phosphorylate and desensitize the receptor. J Biol Chem 260: 2165–2171

    Google Scholar 

  • Neve KA, Barret DA, Molinoff PB (1985): Selective regulation of 0-1 and 0-2 adrenergic receptors by atypical agonists. J Pharmacol Exptl Ther 235: 657–664

    Google Scholar 

  • Neve KA, Molinoff PB (1986): Turnover of and ß32-adrenergic receptors after down regulation or irreversible blockade. Mol Pharmacol 30: 104–111

    Google Scholar 

  • O’Brien PJ, Zatz M (1984): Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 259: 5054–5057

    Google Scholar 

  • O’Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ (1988): Site-directed mutagenesis of the cytoplasmic domains of the human 02-adrenergic receptor: Localization of regions involved in G protein-receptor coupling. J Biol Chem 263: 15985–15992

    Google Scholar 

  • O’Dowd BF, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989a): Palmitoylation of the human ß2-adrenergic receptor. J Biol Chem 264: 7564–7569

    Google Scholar 

  • O’Dowd BF, Lefkowitz RJ, Caron MG (1989b): Structure of the adrenergic and related receptors. Annu Rev Neurosci 12: 67–83

    Article  Google Scholar 

  • Oron Y, Straub RE, Traktman P, Gershengorn MD (1987): Decreased TRH receptor mRNA activity precedes homologous down regulation: Assay in oocytes. Science 238: 1406–1408

    Article  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Bogachuk AS (1988): Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230: 1–5

    Article  Google Scholar 

  • Putman RN, Molinoff PB (1980): Interactions of agonists and antagonists with 0-adrenergic receptors on intact L6 muscle Cells. J Cyclic Nucleotide Protein Phosphor Res 6: 421–435

    Google Scholar 

  • Roesler WJ, Vandenbark GR, Hanson RW (1988): Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263: 9063–9066

    Google Scholar 

  • Sarkar G, Sommer SS (1989): Access to a messenger RNA sequence or its protein product is not limited by tissue or species specificity. Science 244: 331–334

    Article  Google Scholar 

  • Schobert B, Lanyi JK, Oesterheld D (1988): Structure and orientation of halorhodopsin in the membrane: A proteolytic fragmentation study. EMBO J 4: 905–911

    Google Scholar 

  • Shear M, Insel PA, Melmon KL, Coffino P (1976): Agonist-specific refractoriness induced by isoproterenol: Studies with mutant Cells. J Biol Chem 251: 7572–7576

    Google Scholar 

  • Sibley DR, Peters JR, Nambi P, Caron MG, Lefkowitz RJ (1984): Desensitization of turkey erythrocyte adenylate cyclase: ß-adrenergic receptor phosphorylation is correlated with attenuation of adenylate cyclase activity. J Biol Chem 259: 9742–9749

    Google Scholar 

  • Sibley DR, Strasser RH, Caron MG, Lefkowitz RJ (1985): Homologous desensitization of adenylyl cyclase is associated with phosphorylation of the ß-adrenergic receptor. J Biol Chem 260: 3883–3886

    Google Scholar 

  • Smith JD, Liu A Y-C (1988): Increased turnover of the messenger RNA encoding tyrosine aminotransferase can account for the desensitization and de-induction of tyrosine aminotransferase by 8-bromo-cyclic AMP treatment and removal. EMBO J 7: 3711–3716

    Google Scholar 

  • Stadel JM, Nambi P, Lavin TN, Heald SL, Caron MG, Lefkowitz RJ (1982): Catecholamine-induced desensitization of turkey erythrocyte adenylyl cyclase: Structural alterations in the ß 3-adrenergic receptor revealed by photoaffinity labeling. J Biol Chem 257: 9242–9245

    Google Scholar 

  • Stadel JM, Nambi P, Shorr RGL, Sawyer DF, Caron MG, Lefkowitz RJ (1983a): Catecholamine-induced desensitization of turkey erythrocyte adenylyl cyclase is associated with phosphorylation of the ß-adrenergic receptor. Proc Natl Acad Sci USA 80: 3173–3177

    Article  Google Scholar 

  • Stadel JM, Strulovici B, Nambi P, Lavin TN, Briggs MM, Caron MG, Lefkowitz RJ (1983b): Desensitization of the ß-adrenergic receptor of frog erythrocytes: Recovery and characterization of the down regulated receptors in sequestered vesicles. J Biol Chem 258: 3032–3038

    Google Scholar 

  • Strader CD, Sibley DR, Lefkowitz RJ (1984): Association of sequestered ß 2-adrenergic receptors with the plasma membrane: A novel mechanism for receptor down regulation. Life Sci 35: 1601–1610

    Google Scholar 

  • Strader CD, Sigal IS, Register R, Candelore MR, Rands E, Dixon RAF (1987a): Identification of residues required for ligand binding to the 0-adrenergic receptor. Proc Natl Acad Sci USA 94: 4384–4388

    Article  Google Scholar 

  • Strader CD, Sigal IS, Blake AD, Cheung AH, Register RB, Rands E, Zemcik BA, Candelore MR, Dixon RAF (1987b): The carboxyl terminus of the hamster ß-adrenergic receptor expressed in mouse L Cells is not required for receptor sequestration. Cell 49: 855–863

    Article  Google Scholar 

  • Strasser RH, Sibley DR, Lefkowitz RJ (1986): A novel catecholamine activated adenosine cyclic 3′,5′-phosphate independent pathway for ß-adrenergic receptor phosphorylation in wild type and mutant S49 lymphoma Cells: Mechanism of homologous desensitization of adenylyl cyclase. Biochemistry 25: 1371–1377

    Article  Google Scholar 

  • Strulovici B, Cerione RA, Kilpatrick BF, Caron MG, Lefkowitz RJ (1984): Direct demonstration of impaired functionality of a purified desensitized ß-adrenergic receptor in a reconstituted system. Science 225: 837–840

    Article  Google Scholar 

  • Su YF, Harden TK, Perkins JP (1980): Catecholamine specific desensitization of adenylyl cyclase: Evidence for a multiple step process. J Biol Chem 255: 7410–7419

    Google Scholar 

  • Terman BI, Insel PA (1988): Use of 1-deoxymannogirimycin to show that complex oligosaccharides regulate Cellular distribution of the at-adrenergic receptor glycoprotein in BCgHj muscle Cells. Mol Pharmacol 34: 8–14

    Google Scholar 

  • Thompson P, Findley JBC (1984): Phosphorylation of bovine rhodopsin. Identification of the phosphorylated sites. Biochem J 220: 773–780

    Google Scholar 

  • Toews ML, Harden TK, Perkins JP (1983): High-affinity binding of agonists to 0-adrenergic receptors on intact Cells. Proc Natl Acad Sci USA 80: 3553–3557

    Article  Google Scholar 

  • Wilden U, Hall SW, Kiihn H (1986): Phosphodiesterase activation of photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48kDa protein of rod outer segments. Proc Natl Acad Sci USA 83: 1174–1178

    Article  Google Scholar 

  • YamamotoKK, Gonzalez GA, Biggs WH III, Montminy MR (1988): Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334: 494–498

    Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987): Direct activation of mammalian atrial muscarinic K channels by a human erythrocyte pertussis toxin-sensitive G protein, Gk. Science 235: 207–211

    Article  Google Scholar 

  • Yatani A, Imoto Y, Codina J, Hamilton SL, Brown AM, Birnbaumer L (1988): The stimulatory G-protein of adenylyl cyclase, Gs, also stimulate dihydropyridine-sensitive Ca2+ channels. J Biol Chem 263: 9887–9895

    Google Scholar 

  • Young D, Waitches G, Birchmeier C, Fasano O, Wigler M (1986): Isolation and characterization of a new Cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45: 711–719

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

O’Dowd, B., Collins, S., Bouvier, M., Caron, M.G., Lefkowitz, R.J. (1992). Structural, Functional, and Genetic Aspects of Receptors Coupled to G-Proteins. In: Brann, M.R. (eds) Molecular Biology of G-Protein-Coupled Receptors. Applications of Molecular Genetics to Pharmacology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6772-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6772-7_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6774-1

  • Online ISBN: 978-1-4684-6772-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics