Skip to main content

Abstract

The initial determination of the primary structure of bovine (Ovchinnikov, 1982; Hargrave et al., 1983) and ovine (Findlay et al., 1981; Brett and Findlay, 1983) opsins and parts of the equine and porcine proteins (Pappin and Findlay, 1984) by the protein sequencing approach was rapidly followed by the derivation of the structure of a number of other species from their nucleotide sequences (for the latest compilation, see Figure 1.1). Among G-protein receptors, the rhodopsins have been well characterized by physical techniques; the biochemistry related to their function has also been documented more completely than for the others. This chapter will describe the amalgamation of the information obtained so far into a representation of the structure and its implications for the function of the visual pigment. In the absence of a crystallographically derived structure, the crude structural model we describe can be used predictively and to analyze results of both physical and mutagenic studies of rhodopsin structure and function. Moreover, it has relevance for the whole superfamily of G-protein-linked receptors, as it is likely that the structural framework will be well preserved. The final goal in all this work is a detailed understanding of the structure of rhodopsin and of the molecular mechanisms through which its functional attributes are expressed. Its significance extends not only to G-protein-linked receptors as a superfamily (Findlay and Eliopoulos, 1991) but to integral membrane proteins in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert AD, Litman BJ (1978): Independent structural domains in the membrane protein bovine rhodopsin. Biochemistry 17: 3893–3900

    Google Scholar 

  • Al-Saleh S, Gore M, Akhtar M (1987): On the disulfide bonds of rhodopsins. Biochem 7 246: 131–137

    Google Scholar 

  • Applebury ML, Zuckerman DM, Lamola AA, Jovin TM (1974): Rhodopsin. Purification and recombination with phospholipids assayed by the metarhodopsin I→ metarhodopsin II transition. Biochemistry 13: 3448–3458

    Google Scholar 

  • Aton BR (1986): Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules. Biochemistry 25: 677–680

    Google Scholar 

  • Attwood TK, Eliopoulos EE, Findlay JBC (1991): Multiple sequence alignment of protein families showing low sequence homology — a methodological approach using database pattern-matching discriminators for G-protein-linked receptors. Gene 98: 153–159

    Google Scholar 

  • Baehr W, Falk JD, Bugra K, Triantafyllos JT, McGinnis JF (1988): Isolation and analysis of the mouse opsin gene. FEBS Lett 238: 253–256

    Google Scholar 

  • Bagley KA, Eisenstein L, Ebrey TG, Tsuda M (1989): A comparative-study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Biochemistry 28: 3366–3373

    Google Scholar 

  • Baumann C (1972): Kinetics of slow thermal reactions during the bleaching of rhodopsin in the perfused frog retina. J Physiol (Lond) 222: 643–663

    Google Scholar 

  • Bennett N, Sitaramayya A (1988): Inactivation of photoexcited rhodopsin in retinal rods—the roles of rhodopsin kinase and 48-kDa protein (arrestin). Biochemistry 27: 1710–1715

    Google Scholar 

  • Birge RR, Murray LP, Pierce BM, Akita H, Balogh-Nair V, Findsen LA, Nakanishi K (1985): Two-photon spectroscopy of locked 11-cis-rhodopsin: Evidence for a protonated Schiff base in a neutral protein binding site. Proc Natl Acad Sci USA 82: 4117–4121

    Google Scholar 

  • Brett M, Findlay JBC (1979): Investigation of the organization of rhodopsin in the sheep photoreceptor membrane by using cross-linking reagents. Biochem J 177: 215–223

    Google Scholar 

  • Brett M, Findlay JBC (1983): Isolation and characterisation of the CNBr peptides from the proteolytically derived N-terminal fragment of ovine opsin. Biochem J 211: 661–670

    Google Scholar 

  • Corless JM, McCaslin DR, Scott BL (1982): Two-dimensional rhodopsin crystals from disk membranes of frog retinal rod outer segments. Proc Natl Acad Sci USA 79: 1116–1120

    Google Scholar 

  • Cosson P, Lankford SP, Bonifacino JS, Klausner RD (1991) Membrane-protein association by potential intramembrane charge pairs. Nature 351: 414–416

    Google Scholar 

  • Cowman AF, Zuker CS, Rubin GM (1986): An opsin gene expressed in only one photoreceptor Cell type of the Drosophila eye. Cell 44: 705–710

    Google Scholar 

  • Dalbey RE (1990): Positively charged residues are important determinants of membrane-protein topology. Trends Biochem Sci 15: 253–257

    Google Scholar 

  • Davison MD, Findlay JBC (1986): Identification of the sites in opsin modified by photoactivated azido [25I] iodobenzene. Biochem 7236: 389–395

    Google Scholar 

  • De Grip WJ (1982): Thermal stability of rhodopsin and opsin in some novel detergents. Meth Enzymol 81: 256–265

    Google Scholar 

  • De Groot HJM, Harbison GS, Herzfeld J, Griffin RG (1989): Nuclear magnetic- resonance study of the Schiff-base in bacteriorhodopsin — counterion effects on the 15N shift anisotropy. Biochemistry 28: 3346–3353

    Google Scholar 

  • Dratz EA, Hargrave PA (1983): The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Sci 8: 128–131

    Google Scholar 

  • Dratz EA, Van Breemen JFL, Kamps KMP, Keegstra W, Van BrĂĽggen EFJ (1985): Two-dimensional crystallization of bovine rhodopsin. Biochim Biophys Acta 832: 337–342

    Google Scholar 

  • Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990): A point mutation of the rhodopsin gene in one form of retinitis-pigmentosa. Nature 343: 364–366

    Google Scholar 

  • Emeis D, KĂĽhn H, Reichert J, Hofmann KP (1982): Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett 143: 29–34

    Google Scholar 

  • Engelman DM, Henderson R, McLachlan AD, Wallace BA (1980): Path of the polypeptide in bacteriorhodopsin. Proc Natl Acad Sci USA 77: 2023–2027

    Google Scholar 

  • Finbow ME, Eliopoulos EE, Jackson PJ, Keen JN, Meagher L, Thompson P, Jones P, Findlay JBC (1991): Structure of a 16kD integral membrane protein that has identity to the putative proton channel of the vacuolar H +-ATPase. Protein Eng 5: 7–15

    Google Scholar 

  • Findlay JBC, Brett M, Pappin DJC (1981): Primary structure of C-terminal functional sites in ovine rhodopsin Nature 293: 314–316

    Google Scholar 

  • Findlay JBC, Eliopoulos EE (1991): Three-dimensional modeling of G-protein-linked receptors. Trends Pharmacol Sci 11: 492–499

    Google Scholar 

  • Findlay JBC, Pappin DJC (1986): The opsin family of proteins. Biochem J 238: 625–642

    Google Scholar 

  • Findlay JBC, Pappin DJC, Eliopoulos EE (1988): The primary structure and molecular modelling of rhodopsin. Progr Retinal Res 7: 63–68

    Google Scholar 

  • Franke RR, König B, Sakmar TP, Khorana HG, Hofmann KP (1990): Rhodopsin mutants that bind but fail to activate transducin. Science 250: 123–125

    Google Scholar 

  • Franke RR, Sakmar TP, Oprian DD, Khorana HG (1988): A single amino-acid substitution in rhodopsin (lysine 248 — leucine) prevents activation of transducin. J Biol Chem 263: 2119–2122

    Google Scholar 

  • Friedlander M, Blobel G (1985): Bovine opsin has more than one signal sequence Nature 318: 338–343

    Google Scholar 

  • Fryxell KJ, Meyerowitz EM (1987): An opsin gene that is expressed only in the R7 photoreceptor Cell of Drosophila. EMBO 7 6: 443–451

    Google Scholar 

  • Fukada Y, Okano T, Shichida Y, Yoshizawa T, Trehan A, Mead D, Denny M, Asato AE, Liu RSH (1990): Comparative-study on the chromophore binding-sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues. Biochemistry 29: 3133–3140

    Google Scholar 

  • Ganter UM, Schmid ED, Perez-sala D, Rando RR, Siebert F (1989): Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process —A Fourier-transform infrared and Biochemical investigation. Biochemistry 28: 5954–5962

    Google Scholar 

  • Hall MD, Hoon MA, Ryba NJP, Pottinger JDD, Keen JN, Saibil HR, Findlay JBC (1991): Molecular-cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor. Biochem J 274: 35–40

    Google Scholar 

  • Hamm HE, Bownds MD (1986): Protein complement of rod outer segments of frog retina. Biochemistry 25: 4512–4523

    Google Scholar 

  • Hargrave PA, Fong S-L, McDowell JH, Mas MT, Curtis DR, Wang JK, Juszczak E, Smith DP (1983): The structure of bovine rhodopsin. Biophys Struct Mech 9: 235–244

    Google Scholar 

  • Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG, Lefkowitz RJ (1989): Phosphorylation sites on two domains of the Ăź 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem 264: 12657–12665

    Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990): Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J Mol Biol 213: 899–929

    Google Scholar 

  • Hisatomi O, Iwasa T, Tokunaga F, Yasui A (1991): Isolation and characterization of lamprey rhodopsin cDNA. Biochem Biophys Res Commun 174: 1125–1132

    Google Scholar 

  • Honig B, Dinur U, Nakanishi K, Balogh-Nair V, Grawinowicz M, Arnaboldi M, Motto MG (1979): An external point-charge model for wavelength regulation in visual pigments. J Am Chem Soc 101: 7084–7086

    Google Scholar 

  • Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ Jr, Limbird LE (1990): An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J Biol Chem 265: 21590–21595

    Google Scholar 

  • Huber A, Smith DP, Zuker CS, Paulsen R (1990): Opsin of Calliphora peripheral photoreceptors Rl-6. Homology with Drosophila Rhl and posttranslational processing. J Biol Chem 265: 17906–17910

    Google Scholar 

  • Hyde DR, Mecklenburg KL, Pollock JA, Vihtelic TS, Benzer S (1990): Twenty Drosophila visual-system cDNA clones—one is a homolog of human arrestin. Proc Natl Acad Sci USA 87: 1008–1012

    Google Scholar 

  • Janssen JJM, De Caluwe GL J, De Grip WJ (1990): Asp83, Glu113 and Glu134 are not specifically involved in Schiff-base protonation or wavelength regulation in bovine rhodopsin. FEBS Lett 260: 113–118

    Google Scholar 

  • Janssen JJM, Mulder WR, De Caluwe GL J, Vlak JM, De Grip WJ (1991): In vitro expression of bovine opsin using recombinant baculovirus—the role of glutamic acid-(134) in opsin biosynthesis and glycosylation. Biochim Biophys Acta 1089: 68–76

    Google Scholar 

  • Kahlert M, König B, Hofmann KP (1990): Displacement of rhodopsin by GDP from three-loop interaction with transducin depends critically on the diphosphate Ăź-position. J Biol Chem 265: 18928–18932

    Google Scholar 

  • Karnik SS, Khorana HG (1990): Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem 265: 17520–17524

    Google Scholar 

  • Karnik SS, Sakmar TP, Chen HB, Khorana HG (1988): Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 85: 8459–8463

    Google Scholar 

  • Keen JN, Caceres I, Eliopoulos EE, Zagalsky PF, Findlay JBC (1991): Complete sequence and model for the A2 subunit of the carotenoid pigment complex, crustacyanin. Eur J Biochem 197: 407–417

    Google Scholar 

  • König B, Arendt A, McDowell JH, Kahlert M, Hargrave PA, Hofmann KP (1989): Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci USA 86: 6878–6882

    Google Scholar 

  • Koutalos Y, Ebrey TG, Gilson HR, Honig B (1990): Octopus photoreceptor-membranes — surface-charge density and pK of the Schiff-base of the pigments. Biophys J 58: 493–501

    Google Scholar 

  • Koutalos Y, Ebrey TG, Tsuda M, Odashima K, Lien T, Park MH, Shimizu N, Derguini F, Nakanishi K, Gilson HR, Honig B (1989): Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. Biochemistry 28: 2732–2739

    Google Scholar 

  • KĂĽhn H, Drey er WJ (1972): Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett 20: 1–6

    Google Scholar 

  • KĂĽhn H, Hall SW, Wilden U (1984): Light induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176: 473–478

    Google Scholar 

  • Lamola AA, Yamane T, Zipp A (1974): Effects of detergents and high pressures upon the metarhodopsin I zt metarhodopsin II equilibrium. Biochemistry 13: 738–745

    Google Scholar 

  • Liggett SB, Caron MG, Lefkowitz RJ, Hnatowich M (1991): Coupling of a mutated form of the human 0-2-adrenergic receptor to Gi and Gs — requirement for multiple cytoplasmic domains in the coupling process. J Biol Chem 266: 4816–4821

    Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990): Ăź-Arrestin: A protein that regulates Ăź-adrenergic receptor function. Science 248: 1547–1550

    Google Scholar 

  • Matthews RG, Hubbard R, Brown PK, Wald G (1963): Tautomeric forms of metarhodopsin. J Gen Physiol 47: 215–240

    Google Scholar 

  • McRee DE, Tainer J A, Meyer TE, Van Beeumen J, Cusanovich MA, Getzoff ED (1989): Crystallographic structure of a photoreceptor protein at 2.4A resolution. Proc Natl Acad Sci USA 86: 6533–6537

    Google Scholar 

  • Miljanich GP, Brown MF, Mabrey-Gaud S, Dratz EA, Sturtevant JM (1985): Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids. J Membrane Biol 85: 79–86

    Google Scholar 

  • Mitchell DC, Kibelbek J, Litman BJ (1991): Rhodopsin in dimyristoylphospha- tidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt. Biochemistry 30: 37–42

    Google Scholar 

  • Mollevanger LCPJ, Kentgens APM, Pardoen JA, Courtin JML, Veeman WS, Lugtenburg J, De Grip WJ (1987): High-resolution solid state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12. Eur J Biochem 163: 9–14

    Google Scholar 

  • Montell C, Jones K, Zuker CS, Rubin GM (1987): A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor Cells of Drosophila melanogaster. J Neurosci 7: 1558–1566

    Google Scholar 

  • Nakayama TA, Khorana HG (1990): Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of ll-cw-retinal. J Biol Chem 265: 15762–15769

    Google Scholar 

  • Nakayama TA, Khorana HG (1991): Mapping of the amino-acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem 266: 4269–4275

    Google Scholar 

  • Nathans J (1990a): Determinants of visual pigment absorbance —role of charged amino-acids in the putative transmembrane segments. Biochemistry 29: 937–942

    Google Scholar 

  • Nathans J (1990b): Determinants of visual pigment absorbance. Identification of the retinylidene Schiffs base counterion in bovine rhodopsin. Biochemistry 29: 9746–9752

    Google Scholar 

  • Nathans J, Hogness DS (1984): Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA 81: 4851–4855

    Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986): Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232: 193–202

    Google Scholar 

  • Neitz J, Neitz M, Jacobs GH (1989): Analysis of fusion gene and encoded photopigment of colour-blind humans. Nature 342: 679–682

    Google Scholar 

  • Neitz M, Neitz J, Jacobs GH (1991): Spectral tuning of pigments underlying red-green color-vision. Science 252: 971–974

    Google Scholar 

  • Noegel AA, Gerisch G, Lottspeich F, Schleicher M (1990): A protein with homology to the C-terminal repeat sequence of Octopus rhodopsin and synaptophysin is a member of a multigene family in Dictyostelium discoideum. FEBS Lett 266: 118–122

    Google Scholar 

  • North ACT (1991): Structural homology in ligand-specific transport proteins. Biochem Soc Symp 90: 35–48

    Google Scholar 

  • O’Dowd BF, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989): Palmi-toylation of the human Ăź2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalymitoylated form of the receptor. J Biol Chem 264: 7564–7569

    Google Scholar 

  • O’Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML (1985): The Drosophila ninaE gene encodes an opsin. Cell 40: 839–850

    Google Scholar 

  • Ovchinnikov Yu A (1982): Rhodopsin and bacterio-rhodopsin: Structure-function relationships. FEBS Lett 148: 179–191

    Google Scholar 

  • Ovchinnikov Yu A, Abdulaev NG, Bogachuk AS (1988a): Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230: 1–5

    Google Scholar 

  • Ovchinnikov Yu A, Abdulaev NG, Zolotarev AS, Artamonov ID, Bespalov IA, Dergachev AE, Tsuda M (1988b): Octopus rhodopsin—amino acid sequence deduced from cDNA. FEBS Lett 232: 69–72

    Google Scholar 

  • Pappin DJC, Eliopoulos E, Brett M, Findlay JBC (1984): A structural model for ovine rhodopsin. Int J Biol Macromol 6: 73–76

    Google Scholar 

  • Pappin DJC, Findlay JBC (1984): Sequence variability in the retinal-attachment domain of mammalian rhodopsins. Biochem 7 217: 605–613

    Google Scholar 

  • Parry-Smith DJ, Attwood TK (1991): SOMAP: A novel interactive approach to multiple protein sequence alignment. Comput Applic Biosci 7: 233–235

    Google Scholar 

  • Renk G, Crouch RK (1989): Analog pigment studies of chromophore protein interactions in metarhodopsins. Biochemistry 28: 907–912

    Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG (1989): Glutamic acid-113 serves as the retinylidene Schiff-base counterion in bovine rhodopsin. Proc Natl Acad Sci USA 86:8309–8313

    Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG (1991): The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbence and Schiff base pKa. Proc Natl Acad Sci USA 88: 3079–3083

    Google Scholar 

  • Schleicher A, Kiihn H, Hofmann KP (1989): Kinetics, binding constant, and activation-energy of the 48-kDa protein rhodopsin complex by extra- metarhodopsin II. Biochemistry 28: 1770–1775

    Google Scholar 

  • Schneuwly S, Shortridge RD, Larrivee DC, Ono T, Ozaki M, Pak WL (1989): Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine a binding protein). Proc Natl Acad Sci USA 86: 5390–5394

    Google Scholar 

  • Seckler B, Rando RR (1989): Schiff-base deprotonation is mandatory for light-dependent rhodopsin phosphorylation. Biochem J 264: 489–493

    Google Scholar 

  • Sitaramayya A (1986): Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Biochemistry 25: 5460–5468

    Google Scholar 

  • Smith SO, Palings I, Copie V, Raleigh DP, Courtin J, Pardoen J A, Lugtenburg J, Mathies RA, Griffin RG (1987): Low-temperature solid-state 13C NMR studies of the retinal chromophore in rhodopsin. Biochemistry 26: 1606–1611

    Google Scholar 

  • Smith SO, Palings I, Miley ME, Courtin J, De Groot H, Lugtenburg J, Mathies RA, Griffin RG (1990): Solid-state NMR-studies of the mechanism of the opsin shift in the visual pigment rhodopsin. Biochemistry 29: 8158–8164

    Google Scholar 

  • Stamnes MA, Shieh BH, Chuman L, Harris GL, Zuker CS (1991): The cyclophilin homolog ninaA is a tissue-specific integral membrane-protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell 65: 219–227

    Google Scholar 

  • Strader CD, Candelore MR, Hill WS, Dixon RAF, Sigal IS (1989): A single amino-acid substitution in the Ăź-adrenergic-receptor promotes partial agonist activity from antagonists. J Biol Chem 264: 16470–16477

    Google Scholar 

  • Strathmann M, Simon MI (1990): G-protein diversity —a distinct class of a-subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci USA 87: 9113–9117

    Google Scholar 

  • Stubbs GW, Smith HG, Litman BJ (1976): Alkyl glucosides as effective solubilizing agents for bovine rhodopsin. A comparison with several commonly used deter-gents. Biochim Biophys Acta 426: 46–56

    Google Scholar 

  • Takao M, Yasui A, Tokunaga F (1988): Isolation and sequence determination of the chicken rhodopsin gene. Vision Res 28: 471–480

    Google Scholar 

  • Thomas DD, Stryer L (1982): Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J Mol Biol 154: 145–157

    Google Scholar 

  • Thompson P, Findlay JBC (1984): Phosphorylation of ovine rhodopsin: Identification of the phosphorylated sites. Biochem J 220: 773–780

    Google Scholar 

  • Tokunaga F, Iwasa T, Miyagishi M, Kayada S (1990): Cloning of cDNA and amino-acid-sequence of one of chicken cone visual pigments. Biochem Biophys Res Commun 173: 1212–1217

    Google Scholar 

  • Trimble WS, Scheller RH (1988): Molecular-biology of synaptic vesicle-associated proteins. Trends Neurosci 11: 241–242

    Google Scholar 

  • Wald G (1968): Molecular basis of visual excitation. Science 162: 230–239

    Google Scholar 

  • Wald G, Brown PK (1950): The synthesis of rhodopsin from retinenej. Proc Natl Acad Sci USA 36: 84–92

    Google Scholar 

  • Wilden U, KĂĽhn H (1982): Light dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochemistry 21: 3014–3022

    Google Scholar 

  • Yamada T, Takeuchi Y, Komori N, Kobayashi H, Sakai Y, Hotta Y, Matsumoto H (1990): A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science 248: 483–486

    Google Scholar 

  • Yokoyama R, Yokoyama S (1990a): Isolation, DNA-sequence and evolution of a color visual pigment gene of the blind cave fish Astyanax fasciatus. Vision Res 30: 807–816

    Google Scholar 

  • Yokoyama R, Yokoyama S (1990b): Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci USA 87: 9315–9318

    Google Scholar 

  • Zagalsky PF, Eliopoulos EE, Findlay JBC (1990a): The architecture of invertebrate carotenoproteins. Comp Biochem Physiol B 97: 1–18

    Google Scholar 

  • Zagalsky PF, Eliopoulos EE, Findlay JBC (1991): The lobster carapace caroteno-protein, ce-crustacyanin. A possible role for tryptophan in the bathochromic spectral shift of protein-bound astaxanthin. Biochem J 274: 79–83

    Google Scholar 

  • Zagalsky PF, Mummery RS, Eliopoulos EE, Findlay JBC (1990b): The quaternary structure of the lobster carapace carotenoprotein, crustacyanin. Studies using cross-linking agents. Comp Biochem Physiol B 97: 837–848

    Google Scholar 

  • Zhukovsky EA, Oprian DD (1989): Effect of carboxylic-acid side-chains on the absorption maximum of visual pigments. Science 246: 928–930

    Google Scholar 

  • Zhukovsky EA, Robinson PR, Oprian DD (1991): Transducin activation by rhodopsin without a covalent bond to the ll-cis-retinal chromophore. Science 251: 558–560

    Google Scholar 

  • Zuker CS, Cowman AF, Rubin GM (1985): Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40: 851–858

    Google Scholar 

  • Zuker CS, Montell C, Jones K, Laverty T, Rubin GM (1987): A rhodopsin gene expressed in photoreceptor Cell R7 of the Drosophila eye —homologies with other signal-transducing molecules. J Neurosci 7: 1550–1557

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Ryba, N.J.P., Hall, M.D., Findlay, J.B.C. (1992). Rhodopsin. In: Brann, M.R. (eds) Molecular Biology of G-Protein-Coupled Receptors. Applications of Molecular Genetics to Pharmacology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6772-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6772-7_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6774-1

  • Online ISBN: 978-1-4684-6772-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics