Skip to main content

Models of Depression Used in the Pharmaceutical Industry

  • Chapter
Animal Models of Depression

Abstract

An animal model is a representation of some aspects of a human disease. Modeling mental disease is problematic in that the symptoms may be poorly defined and the underlying pathophysiology poorly understood. This is especially true of depression, which is the name given to a heterogeneous group of disorders having in common the disturbance of mood (Cronholm, 1984; Klerman, 1984; Baldessarini, 1985). Models of depression are made primarily for two reasons: to allow experimental manipulation of behavioral and biochemical variables that might provide insight into the etiology and underlying pathophysiology of the disease and to allow prediction of how a variable such as an antidepressant drug might affect the disease (Everitt and Keverne, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson LY, Seligman MEP (1977): Modelling psychopathology in the laboratory: History and rationale. In: Psychopathology: Experimental Models, Maser JD, Seligman MEP, eds. San Francisco: Freeman

    Google Scholar 

  • Aghajanian GK, Lakoski JM (1984): Hyperpolarization of serotonergic neurons by serotonin and LSD: Studies in brain slices showing increased K+ conductance. Brain Res 305:181–185

    Article  PubMed  CAS  Google Scholar 

  • Aprison MH, Hingtgen JN (1981): Hypersensitive serotonergic receptors: A new hypothesis for one subgroup of unipolar depression derived from an animal model. In: Serotonin—Current Aspects of Neurochemistry and Function, Haber B, Gabay S, Alivisatos S, Issidorides M, eds. New York: Plenum

    Google Scholar 

  • Aprison MH, Takahashi R, Tachiki K (1978): Hypersensitive serotonergic receptors involved in clinical depression—A theory. In: Neuropharmacology and Behavior, Haber B, Aprison MH, eds. New York: Plenum

    Google Scholar 

  • Atrens DM (1984): Self-stimulation and psychotropic drugs: A methodological and conceptual critique. In: Animal Models in Psychopathology, Bond NW, ed. New York: Academic Press

    Google Scholar 

  • Baldessarini RJ (1985): Drugs and the treatment of psychiatric disorders. In: Goodman and Gilmans The Pharmacological Basis of Therapeutics, Gilman AG, Goodman LS, Rall TW, Murad F, eds. New York: Macmillan

    Google Scholar 

  • Bond NW (1984): Animal models in psychopathology: An introduction. In: Animal Models in Psychopathology, Bond NW, ed. New York: Academic Press

    Google Scholar 

  • Browne RG (1979): Effects of antidepressants and anticholinergics in a mouse “behavioral despair” test. Eur J Pharmacol 58:331–334

    Article  PubMed  CAS  Google Scholar 

  • Brunello N, Barbaccia ML, Chuang DM, Costa E (1982): Down-regulation of β-adrenergic receptors following repeated injections of desmethylimipramine: Permissive role of serotonergic axons. Neuropharmacology 21:1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Davis JM (1965): Norepinephrine in depressive reactions: A review. Arch Gen Psychiatry 13:483–494

    Article  PubMed  CAS  Google Scholar 

  • Cairncross KD (1984): Olfactory bulbectomy as a model of depression. In: Animal Models in Psychopathology, Bond NW, ed. New York: Academic Press

    Google Scholar 

  • Carlsson A (1984): Current theories on the mode of action of antidepressant drugs. Adv Biochem Psychopharmacol 39:213–221

    PubMed  CAS  Google Scholar 

  • Charney DS, Menkes DB, Heninger GR (1981): Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch Gen Psychiatry 38:1160–1180

    Article  PubMed  CAS  Google Scholar 

  • Cooper BR, Howard JL, Soroko FE (1983): Animal models used in prediction of antidepressant effects in man. J Clin Psychiatry 44:63–66

    PubMed  CAS  Google Scholar 

  • Cornfeldt M, Fisher B, Fielding S (1982): Rat internal capsule lesion: A new test for detecting antidepressants. Fed Proc 41:1066

    Google Scholar 

  • Cowen PJ, Grahame-Smith DG (1983): Abstract. In: Preclinical Psychopharma-cology, Grahame-Smith DG, Cowen PJ, eds. Amsterdam: Excerpta Medica

    Google Scholar 

  • Cowen PJ, Grahame-Smith DG, Green AR, Heal DJ (1982): β-Adrenoceptor agonists enhance 5-hydroxytryptamine-mediated behavioural responses. Br J Pharmacol 76:265–270

    PubMed  CAS  Google Scholar 

  • Crawley JN (1984): Preliminary report of a new rodent separation model of depression. Prog Neuropsychopharmacol Biol Psychiatry 8:447–457

    PubMed  CAS  Google Scholar 

  • Cronholm, B (1984): The concept of depression: Diagnosis and Classification. In: Frontiers in Biochemical and Pharmacological Research in Depression, Usdin E, Asberg M, Bertilsson L, Sjöqvist F, eds. New York: Raven Press

    Google Scholar 

  • De Graaf JS, Van Riezen H, BerendsĂ©n HHG, Van Delft AML (1985): A set of behavioural tests predicting antidepressant activity. Drug Dev Res 5:291–301

    Article  Google Scholar 

  • Delini-Stula A (1980): Drug-induced alterations in animal behavior as a tool for the evaluation of antidepressants: Correlation with biochemical effects. In: Psychotropic Agents, Part I: Antipsychotics and Antidepressants, Hoffmeister F, Stille G, eds. Berlin: Springer-Verlag

    Google Scholar 

  • Dingledine R, ed. (1984): Brain Slices. New York: Plenum

    Google Scholar 

  • Dingledine R, Dodd J, Kelly JS (1980): The in vitro brain slice as a useful neurophys-iological preparation for intracellular recording. J Neurosci Methods 2:323–362

    Article  PubMed  CAS  Google Scholar 

  • Engberg G, Svensson TH (1980): Mianserin: Direct alteration of brain norepinephrine neurons by blocking alpha2-receptors. Commun Psychopharmacol 4:233–239

    PubMed  CAS  Google Scholar 

  • Everett GM (1967): The dopa response potentiation test and its use in screening for antidepressant drugs. In: Antidepressant Drugs, Garattini S, Dukes M, eds. Amsterdam: Excerpta Medica

    Google Scholar 

  • Everitt BJ, Keverne EB (1979): Models of depression based on behavioral observations of experimental animals. In: Psychopharmacology of Affective Disorders, Paykel ES, Coppen A, eds. New York: Oxford University Press

    Google Scholar 

  • Ferris RM, Beaman OJ (1983): Bupropion: A new antidepressant drug, the mechanism of action of which is not associated with down-regulation of postsynaptic β- adrenergic, serotonergic (5-HT2), α 2-adrenergic, imipramine and dopaminergic receptors in brain. Neuropharmacology 22:1257–1267

    Article  PubMed  CAS  Google Scholar 

  • Ferris RM, White HL, Cooper BR, Maxwell RA, Tang FLM, Beaman OJ, Russell A (1981): Some neurochemical properties of a new antidepressant, bupropion hydrochloride (Wellbutrin®). Drug Dev Res 1:21–35

    Article  CAS  Google Scholar 

  • Frazer A, Lucki I, Sills M (1985): Alterations in monoamine-containing neuronal function due to administration of antidepressants repeatedly to rats. Acta Pharmacol Toxicol 56 (Suppl l):21–34

    CAS  Google Scholar 

  • Frazer A, Pandey G, Mendels J, Neeley S, Kane M, Hess ME (1974): The effects of tri-iodothyronine in combination with imipramine on [3H]-cyclic AMP production in slices of rat cerebral cortex. Neuropharmacology 13:1131–1140

    Article  CAS  Google Scholar 

  • Fuller RW (1986): Pharmacologic modification of serotonergic function: Drugs for the study and treatment of psychiatric and other disorders. J Clin Psychiatry 47 (Suppl 4):4–8

    PubMed  CAS  Google Scholar 

  • Fuller RW, Wong DT (1985): Effects of antidepressants on uptake and receptor systems in the brain. Prog Neuropsychopharmacol Biol Psychiatry 9:485–490

    Article  PubMed  CAS  Google Scholar 

  • Gershon S, Holmberg G, Mattsson E, Mattsson N, Marshall A (1962): Imipramine hydrochloride: Its effects on clinical, autonomic and physiological functions. Arch Gen Psychiatry 6:96–101

    Article  PubMed  CAS  Google Scholar 

  • Gluckman MI, Baum T (1969): The pharmacology of iprindole, a new antidepressant. Psychopharmacologia 15:169–185

    PubMed  CAS  Google Scholar 

  • Goldstein JM, Malick JB (1983): An automated descending rate-intensity self-stimulation paradigm: Usefulness for distinguishing antidepressants from neuroleptics. Drug Dev Res 3:29–35

    Article  CAS  Google Scholar 

  • Green AR (1985): Antidepressant treatments and serotonin receptor number and function. Acta Pharmacol Toxicol 56 (Suppl 1):128–137

    CAS  Google Scholar 

  • Horovitz ZP (1966): The relationship of the amygdala to the mechanism of action of two types of antidepressants. In: Recent Advances in Biological Psychiatry, Wortis J, ed. New York: Plenum

    Google Scholar 

  • Howard JL, Pollard GT (1983): Are primate models of neuropsychiatric disorders

    Google Scholar 

  • useful to the pharmaceutical industry? In: Ethopharmacology: Primate Models of Neuropsychiatric Disorders. Miczek KA, ed. New York: Alan R. Liss

    Google Scholar 

  • Howard JL, Soroko FE, Cooper BR (1981): Empirical behavioral models of depression, with emphasis on tetrabenazine antagonism. In: Antidepressants: Neurochemical, Behavioral and Clinical Perspectives, Enna SJ, Malick JB, Richelson E, eds. New York: Raven Press

    Google Scholar 

  • Janowsky A, Okada F, Manier DH, Applegate CD, Sulser F, Steranka L (1982): Role of serotonergic input in the regulation of the β-adrenergic receptor-coupled adenylate cyclase system. Science 218:900–901

    Article  PubMed  CAS  Google Scholar 

  • Jesberger JA, Richardson JS (1985): Animal models of depression: Parallels and correlates to severe depression in humans. Biol Psychiatry 20:764–784

    Article  PubMed  CAS  Google Scholar 

  • Johnston JP (1968): Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Jones CN, Howard JL, McBennett ST (1980): Stimulus properties of antidepressants in the rat. Psychopharmacology 67:111–118

    Article  PubMed  CAS  Google Scholar 

  • Katz RJ (1981): Animal models and human depressive disorders. Neurosci Biobehav Rev 5:231–246

    Article  PubMed  CAS  Google Scholar 

  • Kerkut GA, Wheal HV, eds. (1981): Electrophysiology of Isolated Mammalian CNS Preparations. New York: Academic Press

    Google Scholar 

  • Klerman GL (1984): History and development of modern concepts of affective illness. In: Neurobiology of Mood Disorders, Post RM, Ballenger JC, eds. Baltimore: Williams and Wilkins

    Google Scholar 

  • Kuhn R (1958): The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatry 115:459–464

    PubMed  CAS  Google Scholar 

  • Lecrubier Y, Puech AJ, Jouvent R, Simon P, Widloch D (1980): A beta adrenergic stimulant (salbutamol) versus clomipramine in depression: A controlled study. Br J Psychiatry 136:354–358

    Article  PubMed  CAS  Google Scholar 

  • Leith NJ, Barrett RJ (1980): Effects of chronic amphetamine or reserpine on self-stimulation responding: Animal model of depression? Psychopharmacology 72: 9–15

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE (1984): Pharmacology of new antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 8:97–108

    Article  PubMed  CAS  Google Scholar 

  • Liebman JM (1983): Discriminating between reward and performance: A critical review of intracranial self-stimulation methodology. Neurosci Biobehav Rev 7: 45–72

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Pilc A (1984): Chronic antidepressants and GABA synapses. Neuropharmacology 23:841–842

    Article  CAS  Google Scholar 

  • Maas JW (1975): Biogenic amines and depression: Biochemical and pharmacological separation of two types of depression. Arch Gen Psychiatry 32:1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Maier SF (1984): Learned helplessness and animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 8:435–446

    PubMed  CAS  Google Scholar 

  • Maj J, Przegalinski E, Mogilnicka E (1984): Hypotheses concerning the mechanism of action of antidepressant drugs. Rev Physiol Biochem Pharmacol 100:1–74

    PubMed  CAS  Google Scholar 

  • Malick JB (1983): Potentiation of yohimbine-induced lethality in mice: Predictor of antidepressant potential. Drug Dev Res 3:357–363

    Article  CAS  Google Scholar 

  • Mandell AJ, Segal DS, Kuczenski R (1975): Metabolic adaptation to antidepressant drugs: Implications for pathophysiology and treatment in psychiatry. In: Catecholamines and Behavior. 2. Neuro Psychopharmacology, Friedhoff AJ, ed. New York: Plenum

    Google Scholar 

  • Maxwell RA (1983): Second generation antidepressants: The pharmacological and clinical significance of selected examples. Drug Dev Res 3:203–211

    Article  CAS  Google Scholar 

  • Maxwell RA (1984): The state of the art of the science of drug discovery—an opinion. Drug Dev Res 4:375–389

    Article  CAS  Google Scholar 

  • McKinney WT Jr, Bunney WE Jr (1969): Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    Article  PubMed  Google Scholar 

  • McKinney WT Jr (1974): Animal models in psychiatry. Perspect Biol Med 17:529–541

    PubMed  Google Scholar 

  • McKinney WT Jr (1977): Biobehavioral models of depression in monkeys. In: Animal Models in Psychiatry and Neurology, Hanin I, Usdin E, eds. Oxford: Pergamon Press

    Google Scholar 

  • Mishra R, Janowsky A, Sulser F (1980): Action of mianserin and zimelidine on the norepinephrine receptor coupled adenylate cyclase system in brain: Subsensitivity without reduction in β-adrenergic receptor binding. Neuropharmacology 19:983–988

    Article  PubMed  CAS  Google Scholar 

  • Nagayama N, Hingtgen JN, Aprison MH (1981): Postsynaptic action by four antidepressive drugs in an animal model of depression. Pharmacol Biochem Behav 15:125–130

    Article  PubMed  CAS  Google Scholar 

  • Nybäck HV, Walters JR, Aghajanian GK, Roth RH (1975): Tricyclic antidepressants: Effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32:302–312

    Article  PubMed  Google Scholar 

  • Olds J, Milner P (1954): Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  • Pollard GT, Howard JL (1986): Similar effects of antidepressant and non-antidepressant drugs on behavior under an interresponse-time >72-s schedule. Psychopharmacology 89:253–258

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977): Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD (1983): Failure of repeated peer separations to induce depression in infant rhesus monkeys. Drug Dev Res 3:567–572

    Article  Google Scholar 

  • Quinton RM (1963): The increase in the toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol 21:51–66

    CAS  Google Scholar 

  • Racagni G, Mocchetti I, Calderini G, Battistella A, Brunello N (1983): Temporal sequence of changes in central noradrenergic system of rat after prolonged antidepressant treatment: Receptor desensitization and neurotransmitter interactions. Neuropharmacology 22:415–424

    Article  PubMed  CAS  Google Scholar 

  • Rastogi SK, McMillan DE (1985): Effects of some typical and atypical antidepressants on schedule-controlled responding in rats. Drug Dev Res 5:243–250

    Article  CAS  Google Scholar 

  • Richelson E, El-Fakahany E (1982): Changes in the sensitivity of receptors for neurotransmitters and the actions of some psychotherapeutic drugs. Mayo Clin Proc 57:576–582

    PubMed  CAS  Google Scholar 

  • Richelson E, Pfenning M (1984): Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: Most antidepressants selectively block norepinephrine uptake. Eur J Pharmacol 104:277–286

    Article  PubMed  CAS  Google Scholar 

  • Rubin B, Malone MH, Waugh MH, Burke JC (1957): Bioassay of Rauwolfia roots and alkaloids. J Pharmacol Exp Ther 120:125–136

    PubMed  CAS  Google Scholar 

  • Russell RW, Overstreet DH (1984). Animal models in neurobehavioral toxicology. In: Animal Models in Psychopathology, Bond NW, ed. New York: Academic Press

    Google Scholar 

  • Sanghvi I, Bindler E, Gershon S (1969): The evaluation of a new animal method for the prediction of clinical anti-depressant activity. Life Sci 8:99–106

    Article  PubMed  CAS  Google Scholar 

  • Sansone M, Melzacka M, Hano J, Vetulani J (1983): Reversal of depressant action of trazodone on avoidance behaviour by its metabolite m-chlorophenylpiperazine. J Pharm Pharmacol 35:189–190

    Article  PubMed  CAS  Google Scholar 

  • ScuvĂ©e-Moreau JJ, Dresse AE (1979): Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons of the rat. Eur J Pharmacol 57:219–225

    Article  PubMed  Google Scholar 

  • Seiden LS, O’Donnell JM (1985): Effects of antidepressant drugs on DRL behavior. In: Behavioral Pharmacology: The Current Status, Seiden LS, Balster RL, eds. New York: Alan R. Liss

    Google Scholar 

  • Sellinger-Barnette MM, Mendels J, Frazer A (1980): The effect of psychoactive drugs on beta-adrenergic receptor binding sites in rat brain. Neuropharmacology 19:447–454

    Article  PubMed  CAS  Google Scholar 

  • Sheard MH, Zolovick A, Aghajanian GK (1972). Raphe neurons: Effect of tricyclic antidepressant drugs. Brain Res 43:690–694

    Article  PubMed  CAS  Google Scholar 

  • Sulser F (1978): Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: Molecular approaches to an understanding of affective disorders. Pharmakopsychiatry Neuropsychopharmakol 11:43–52

    CAS  Google Scholar 

  • Sulser F (1982): Regulation and adaptation of central norepinephrine receptor systems: Modification by antidepressant treatments. Psychiatr J Univ Ottawa 7:196–203

    CAS  Google Scholar 

  • Sulser F, Vetulani J, Mobley PL (1978): Commentary: Mode of action of antidepressant drugs. Biochem Pharmacol 27:257–261

    Article  PubMed  CAS  Google Scholar 

  • Trulson ME (1984): Pharmacological investigation of CNS unit responses in awake, freely moving animals. Trends Pharmacol Sci 5:287–289

    Article  CAS  Google Scholar 

  • Van Riezen H, Schnieden H, Wren AF (1977): Olfactory bulb ablation in the rat: Behavioural changes and their reversal by antidepressive drugs. Br J Pharmacol 60:521–528

    PubMed  Google Scholar 

  • Vernier VG, Hanson HM, Stone CA (1962): The pharmacodynamics of amitriptyline. In: Psychosomatic Medicine, Nodine JH, Moyer JH, eds. Philadelphia: Lea and Febiger

    Google Scholar 

  • Vetulani J, Dingell JV, Sulser F (1974): Effect of chronic treatment with desipramine (DMI) and iprindole (IP) on the norepinephrine (NE) sensitive adenylate cyclase system in slices of the rat limbic forebrain (LFS). The Pharmacologist 16:287

    Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976): A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol 293:109–114

    Article  PubMed  CAS  Google Scholar 

  • Vogel JR (1975): Antidepressants and mouse-killing (muricide) behavior In: Antidepressants, Fielding S, Lal H, eds. New York: Futura

    Google Scholar 

  • Weatherall M (1985): How are drugs discovered? In: Pharmaceutical Medicine, Burley DM, Binns TB, eds. London: Edward Arnold

    Google Scholar 

  • Weissman A, Koe BK (1987): Contributions of industrial research to basic neuropharmacology: Pre-clinical screening and discovery. In: Psychopharmacology: The Third Generation of Progress, Meltzer HY et al., eds. New York: Raven Press

    Google Scholar 

  • William JT, Henderson G, North RA (1985). Characterization of α 2 -adrenoceptors which increase potassium conductance in rat locus coeruleus neurones. Neuroscience 14:95–101

    Article  Google Scholar 

  • Willner P (1984): The validity of animal models of depression. Psychopharmacology 83:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Howard, J.L., Ferris, R.M., Cooper, B.R., Soroko, F.E., Wang, C.M., Pollard, G.T. (1989). Models of Depression Used in the Pharmaceutical Industry. In: Koob, G.F., Ehlers, C.L., Kupfer, D.J. (eds) Animal Models of Depression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6762-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6762-8_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6764-2

  • Online ISBN: 978-1-4684-6762-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics