Skip to main content

Large Deviations in Ergodic Theory

  • Chapter
Seminar on Stochastic Processes, 1984

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 9))

Abstract

The classical example of a large deviation result is Cramer’s theorem. It tells us, in a contemporary formulation, that if Y1, Y2,… is a sequence of independent real valued random variables with identical distribution function F such that

$$ f(\theta ) = E[\exp \{ \theta Y_1 \} [ = \smallint \exp \{ \theta y\} F(dy)$$

is finite for all finite θ,and if Zn = (Y1) + Y2 + … Yn/n then

$$ \text{k}(\text{x})\, = \,\mathop {\sup }\limits_\theta \,[\theta x\, - \,\log \,f(\theta )] $$

satisfies

  1. (0.1)

    \( \overline {_{n \to \infty }^{\lim } } \frac{1} {\text{n}}\,\log \,\text{P}[z_n \, \in \text{A}]\, \leqslant \text{ } - \inf \text{ }k(a):a \in \text{A} \) A closed

and

  1. (0.2)

    \(\overline {_{n \to \infty }^{\lim } } \frac{1}{\text{n}}\,\log \,\text{P}[z_n \, \in \text{A}]\, \geqslant \text{ } - \inf \{ k(a):a \in \text{A}\}\) A Open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Adler. F-expansions revisited. Lecture Notes in Math. 318, pp. 1–5. Springer-Verlag, New York - Berlin - Heidelberg, 1973.

    Google Scholar 

  2. R. Azencott. Grandes deviations et applications. Lecture Notes in Math. 774, pp. 1–249. Springer-Verlag, New York - Berlin - Heidelberg, 1980.

    Google Scholar 

  3. R.R. Bahadur, J.C. Gupta, S.L. Zabell. Large deviations, tests and estimates, Asymptotic theory of statistical tests and estimation, (ed. I.M. Chakravarti). Academic Press, New York, 1979, 33–64.

    Google Scholar 

  4. R.R. Bahadur, S.L. Zabell. Large deviations of the sample mean in general vector spaces. Ann. Prob. 7 (1979) 587–621.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. BARBU, Th. PRECUPANU. Convexity and Optimisation in Banach Spaces. Editura Academiei, Bucharest, 1978.

    Google Scholar 

  6. P. Billingsley. Ergodic Theory and Information. Wiley, New York - London - Sidney, 1965.

    MATH  Google Scholar 

  7. H. Cramer. Sur un nouveau theoreme limite de la theorie des probabilités. Colloquium on theory of probability. Paris-Hermann (1937).

    Google Scholar 

  8. P. Cornfeld, s.v. Fomin, Ya.G. Sinai. Ergodic Theory. Springer-Verlag, New York - Berlin - Heidelberg, 1982.

    MATH  Google Scholar 

  9. J.T. Cox, D. Griffeath. Large deviations for Poisson systems of independent random walks. Preprint.

    Google Scholar 

  10. M. Denker, C. Grillenberger, K. Sigmund. Ergodic theory on compact spaces. Lecture Notes in Math 527, New York - Berlin - Heidelberg, 1976.

    MATH  Google Scholar 

  11. M. Donsker, S.R.S. Varadhan. Asymptotic evaluation of certain I Markov process expectations for large time. Comm. Pure Appt. Math.: part 1, 28 (1975), 1–47; part 2, 29 (1976), 279–301; part 3, 29 (1976), 389–461; part 4, 36 (1983), 183–212.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Ellis. Large deviations for a general class of random vectors. Ann. Prob. 12(1984), 1–11.

    Article  MATH  Google Scholar 

  13. D. Griffeath. Private communication.

    Google Scholar 

  14. J.C. Kieffer. A counterexample to Perez’s generalization of the Shannon-McMillan Theorem. Ann. Prob. 1 (1973) 362–364; Ann. Prob. 4 (1976), 153–154.

    Article  MathSciNet  MATH  Google Scholar 

  15. Shu-Teh C. Moy. Generalisations of Shannon-McMillan Theorem. Pacific J. Math. (1961), 705–714.

    Google Scholar 

  16. A. Perez. Extensions of Shannon-McMillan Theorem to more general stochastic processes. Trans. Third Prague Conference on Information theory, Czech. Acad. Sci., Prague 1964, 545–575.

    Google Scholar 

  17. A. Perez. McMillan’s limit theorem for pairs of stationary random processes. Kybernetica, 16 (1980) 301–314.

    MATH  Google Scholar 

  18. Y. Takahashi. Entropy function (free energy) for dynamical systems and their random perturbations.Proc. Int. Symp. SDE, Kyoto 1982, to appear.

    Google Scholar 

  19. S.R.S. VARADHAN. Large deviation and applications. Preprint, to appear in SIAM CBMC-NSF Regional Conference in Applied Math series.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Orey, S. (1986). Large Deviations in Ergodic Theory. In: Çinlar, E., Chung, K.L., Getoor, R.K. (eds) Seminar on Stochastic Processes, 1984. Progress in Probability and Statistics, vol 9. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6745-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6745-1_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6747-5

  • Online ISBN: 978-1-4684-6745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics