Skip to main content

Periodic Solutions of Hamiltonian Systems Having Prescribed Minimal Period

  • Chapter
Advances in Hamiltonian Systems

Part of the book series: Annals of CEREMADE ((CEREMADE,volume 2))

Resume

En partant des travaux de F. Clarke et I. Ekeland, on écrit une version en dimension finie de leur principe de dualité (cela est obtenu par une méthode de discrétisation).

De ce résultat on déduit un algorithme qui permet de trouver des solutions périodiques approchées.à des équations différentielles non-linéaires.

On illustre cette méthode par les résultats obtenus pour l’équation :

$$\frac{{{d}^{2}}x}{d{{t}^{2}}}-{{x}^{3}}+\alpha \left( \cos t+\sin t \right)=0x\left( \cdot \right)\in R$$

Abstract

Using the works of F. Clarke and I. Ekeland, one shows a similar dual principle in the finite dimensionnal case, by discretisation.

From this result, we infer an algorithm (which has been computed), to find periodic solutions to non-linear differential equations.

Finally, we illustrate this method by some numerical results concerning the equation :

$$\frac{{{d}^{2}}x}{d{{t}^{2}}}-{{x}^{3}}+\alpha \left( \cos t+\sin t \right)=0x\left( \cdot \right)\in R$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weinstein, A., Normal modes for nonlinear Hamiltonian systems, Inv. Math. 20 (1973), 47–57.

    MATH  Google Scholar 

  2. Moser, J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Mth. 29 (1976) 727–747.

    Article  MATH  Google Scholar 

  3. Lyapunov, A:, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse (2) (1907) 203–474.

    Google Scholar 

  4. Fadell, E.R., and P.H. Rabinowitz: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math. 45 (1978), 139–174.

    MathSciNet  MATH  Google Scholar 

  5. Ekeland, I., and J.M. Lasry: On the number of periodic trajec-tories for a Hamiltonian flow on a convex energy surface, Ann. of Math. 112 (1980), 283–319.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A. and G. Mancini: On a theorem by Ekeland and Lasry concerning the number of periodic hamiltonian trajectories, J. Diff. Equat. (in press).

    Google Scholar 

  7. Amann, H. and E. Zehnder: Multiple periodic solutions of asymptotically linear Hamiltonian equations

    Google Scholar 

  8. Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978) 157–184.

    Google Scholar 

  9. H.: A variational method for finding periodic solutions of differential equations, Nonlinear evolution equations ( M.G. Crandall, ed.) Academic Press (1928) 225–251.

    Google Scholar 

  10. Benci, V. and P.H. Rabinowitz: Critical point theorem for indefinite functionals, Inv. Math. 52 (1979) 336–352.

    MathSciNet  Google Scholar 

  11. Clarke, F. and I. Ekeland: Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980) 103–116.

    MathSciNet  MATH  Google Scholar 

  12. Ambrosetti, A. and G. Mancini: Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann. 255 (1981) 405–421.

    Article  MathSciNet  MATH  Google Scholar 

  13. Alexander, J.C. and J.A. Yorke: Global bifurcation of periodic orbits, Amer. J. Math. 100 (1978) 263–292.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yorke, J.A. and J. Mollet-Peret, preprint.

    Google Scholar 

  15. Berger, M.S., Nonlinearity and functional analysis, Academic Press, New-York, 1978.

    Google Scholar 

  16. Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems: a survey, preprint.

    Google Scholar 

  17. Ekeland, I., Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Equat. 34 (1979) 523–534.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ambrosetti, A. and P.H. Rabinowitz: Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  19. Clarke, F., Periodic solutions to Hamiltonian inclusions, J. Diff. Equat. 40 (1981), 1–7.

    Article  MATH  Google Scholar 

  20. Brezis, H., J.M. Coron and L. Nirenberg: Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980) 667–684.

    MathSciNet  MATH  Google Scholar 

  21. Hempel, J.A., Multiple solutions for a class of nonlinear boundary value problems, Ind. Univ. Math. J. 20 (1971), 983–996.

    Article  MathSciNet  MATH  Google Scholar 

  22. Berger, M.S., Critical point theory for nonlinear eigenvalue problems with indefinite principal part, Trans. Amer. Math. Soc. 186 (1973) 151–169.

    Article  Google Scholar 

  23. Amann, H., Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976) 620–709.

    Article  MathSciNet  MATH  Google Scholar 

  24. J Dancer, C.N., Solution branches for mappings in cones, and applications, Bull. Austral. Math. Soc. 11 (1976) 131–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Mancini, G. (1983). Periodic Solutions of Hamiltonian Systems Having Prescribed Minimal Period. In: Aubin, J.P., Bensoussan, A., Ekeland, I. (eds) Advances in Hamiltonian Systems. Annals of CEREMADE, vol 2. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6728-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6728-4_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3130-7

  • Online ISBN: 978-1-4684-6728-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics