Notes on the Evolution of Complete Correlations

  • Dan Laksov
Part of the Progress in Mathematics book series (PM, volume 24)


1. The problem of correlations between two d-dimensional spaces in an n-dimensional space can be stated in the following way: “In a projective space [n] of dimension n, determine all the pairs of linear subspaces Sd and S’d of dimension d together with a correlation between them, such that Sd and S’d satisfy given Schubert conditions a0,a1,…,ad and a’0,a’1,…,a’d respectively, and the correlation satisfies a composite condition \(\mu _{0}^{{{n_{0}}}},\mu _{1}^{{{n_{2}}}}, \ldots ,\mu _{{d - 1}}^{{{n_{{d - 1}}}}}\) where
$$\Sigma _{{i = 0}}^{d}({a_{i}} + a_{i}^{!}) + d = \Sigma _{{i = 0}}^{d}{\text{ }}{n_{i}}$$
and where μi is the condition that the two i-dimensional spaces in which Sd and S’d in general meet two fixed linear spaces Rn-d+i and R’n-d+i respectively, are conjugate under the correlation.”


Singular Point Singular Line Complete Correlation Exceptional Locus Monoidal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Battaglini: “Sui complessi ternari di primo ordine e di prima classe”. Giorn. di Mat 20 (1882), 230–248.Google Scholar
  2. [2]
    M. Chasles: “Determination du nombre des sections coniques qui doivent toucher cinq courbes données d’ordre quelquonque, ou satisfaire à diverses autres conditions.” C.R. de l’Acad. de Sciences 58 (1864), 222–226.Google Scholar
  3. [3]
    M. Chasles: “Construction des coniques qui satisfont à cinq conditions. Nombre de solutions dans chaque question”. C.R. 58 (1864), 297–308.Google Scholar
  4. [4]
    G.Z. Giambelli: “Il problema della correlazione negli iperspazi”. Mem. Reale Inst. Lombardo 19 (1903·), 155–194.Google Scholar
  5. [5]
    G. Del Prete: “Le corrispondenze proiettive degeneri”. Rend. Inst. Lombardo 30 (1897), 400–409.Google Scholar
  6. [6]
    T.A. Hirst: “On the correlation of two planes”. Proc. London Math. Soc. 5 (1874), 40–70.CrossRefGoogle Scholar
  7. [7]
    T.A. Hirst: “On correlations in space”. Proc. London Math. Soc. 6 (1874), 7–9.CrossRefGoogle Scholar
  8. [8]
    T.A. Hirst: “On the correlation of two planes”. Annali di matematica 6 (1875), 260–297.Google Scholar
  9. [9]
    T.A. Hirst: “Note on the correlations of two planes”. Proc. London Math. Soc. 8 (1877), 262–273.zbMATHCrossRefGoogle Scholar
  10. [10]
    T.A. Hirst: “Note on the correlation of two planes”. Annali de matematica pura ed applicata 8 (1878), 287–300.Google Scholar
  11. [11]
    T.A. Hirst: “On the correlation of two spaces each of three dimensions”. Proc. London Math. Soc. 21 (1890), 92–118.zbMATHCrossRefGoogle Scholar
  12. [12]
    G. Loria: “Sulle corrispondenze proiettive fra due piani e fra due spazii”. Giorn. di Math. 22 (1884), 1–16.Google Scholar
  13. [13]
    Predella: “Le omografie in uno spazio ad un numero qualunque di dimensioni”. Ann. di mat. 17 (1890), 113–159.Google Scholar
  14. [14]
    H. Schubert: “Die n-dimensionalen Verallgemeinerungen der fundamentalen Anzahlen unseres Raums”. Math. Ann. 26 (1886), 26–51.MathSciNetCrossRefGoogle Scholar
  15. [15]
    H. Schubert: “Über Räume zweiten Grades”. Mitteil, der Hamb. Math, ges. 1 (1889), 290–310.zbMATHGoogle Scholar
  16. [16]
    H. Schubert: “Kegelschnitt-Anzahlen als Functionen der Raum-Dimension”. Mitteil. der Hamb. Math. Ges. 2 (1890), 172–184.zbMATHGoogle Scholar
  17. [17]
    H. Schubert: “Über eine Verallgemeinerung der Aufgaben der abzählenden Geometrie”. Mitteil. der Hamb. Math. Ges. 3 (1891), 12–20.zbMATHGoogle Scholar
  18. [18]
    H. Schubert: “Beitrag zur Liniengeometrie in n Dimensionen”. Mitteil. der Hamb. Math. Ges. 3 (1891), 86–97.Google Scholar
  19. [19]
    II. Schubert: “Beziehungen zwischen den linearen Räumen auferleg baren characteristischen Bedingungen”. Math. Ann. 38 (1891), 598–602.Google Scholar
  20. [20]
    H. Schubert: “Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen”. Math. Ann. 45 (1894), 153–206.MathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Schubert: “Correlative Verwandtschaft in n Dimensionen”. Jaresher. der Deutsch. Math. Verein 4 (1894–95).Google Scholar
  22. [22]
    C. Segre: “Sulla teoria e sulla classificazione delle homografie in uno spazio lineare ad un numero qualunque di dimensioni”. Memorie dell’Acc. dei Lincei 19 (1883–84, 127–148.Google Scholar
  23. [23]
    C. Segre: “Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni”. Mem. Acc. Torino 36 (1884), 3.Google Scholar
  24. [24]
    J.G. Semple: “On complete quadrics (I)”. Journal London Math. Soc. 23 (1984), 258–267.MathSciNetCrossRefGoogle Scholar
  25. [25]
    J.G. Semple: “The variety whose points represent complete collineations of Sr on S’r”. R.C. Math. Univ. Roma 10 (1951), 201–207.MathSciNetzbMATHGoogle Scholar
  26. [26]
    J.G. Semple: “On complete quadrics (II)”. Journal London Math. Soc. 27 (1952), 280–287.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    F. Severi: “Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche”. Atti del R. Inst. Veneto 75 (1916), 1122–1162.Google Scholar
  28. [28]
    F. Severi: “I fondamenti della geometria numerativa”. Ann. di Mat. 19 (1940), 151–242.MathSciNetCrossRefGoogle Scholar
  29. [29]
    E. Study: “Über die Geometrie der Kegelschnitte, insbesondere deren Characteristikenproblem”. Math. Ann. 26 (1886), 58–101.MathSciNetCrossRefGoogle Scholar
  30. [30]
    R. Sturm: “Das Problem der Projectivität und seine Anwendung Die Flächen zweiten Grades”. Math. Ann. 1 (1869), 533–574.MathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Sturm: “Über correlative oder reciproke Bündel”. Math. Ann. 12 (1877), 254–368.MathSciNetCrossRefGoogle Scholar
  32. [32]
    R. Sturm: Über die resiproke und mit ihr zusammenhängende Verwandtschaften”. Math. Ann. 19 (1882), 461–488.MathSciNetCrossRefGoogle Scholar
  33. [33]
    J.A. Tyrrell: “Complete quadrics and collineations in Sn”. Mathematika 3 (1956), 69–79.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    I. Vainsencher: “Schubert calculus for complete quadries”. To appear in the Proceedings of the Nice conference on enumerative geometry Summer 1981. Birkhäusen.Google Scholar
  35. [35]
    P. Visalli: “Sulle correlazioni in due spazi a tre dimensioni”. Memorie de l’Acc. dei Lincei (4) 3 (1886), 597–671.zbMATHGoogle Scholar
  36. [36]
    P. Visalli: “Sulle collinearita e correlazioni ordinarie ed eccezionali a quattro dimensioni. 1, 2, 3, 3 cont.”. Rend. Inst. Lombardo 29 (1986), 351–359, 439–459, 521–528, 559–565.Google Scholar
  37. [37]
    P. Visalli: “Sulle correlazioni in due spazi a tre dimensioni”. Rendiconti della R. Accademia dei Lincei (4) 3 (1887).Google Scholar
  38. [38]
    B.L. van der Waeruen: “Z.A.G. XV. Lösung des Characteristiken-problems für Kegelschnitte”. Math. Ann. 115 (1938), 645–655.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1982

Authors and Affiliations

  • Dan Laksov
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations