Skip to main content

Control of Bacterial Gene Expression

  • Chapter
  • 82 Accesses

Abstract

A myriad of gene products are involved in cellular metabolism, in the replicative and expressive machineries and in structural components. However, during the (normal) bacterial life cycle, certain products are required only at particular stages. Moreover, adjustment in cellular metabolism may be necessary when the bacterium is confronted with an unusual growth substance or altered external conditions. Thus, while many, if not the majority, of bacterial genes are expressed constitutively, others are actively controlled. Even when active, not all genes are expressed at the same rate, as suggested by the wide variation in the absolute levels of bacterial proteins (from 10 to 105 copies per cell). Control of gene expression protects against wasteful energy consumption since both RNA and protein production expend ATP at a high rate. (Indeed, control mutants that unnecessarily expend energy may be outgrown by their wild-type counterparts in liquid culture.) Gene control also, clearly, prevents monopolisation of the transcription-translation apparatus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Catabolite-Controlled Operons: The Lactose System

  • Beckwith, J.R. and Zipser, D. (eds.) (1970) The Lactose Operon ( Cold Spring Harbor Laboratory, New York ).

    Google Scholar 

  • Kepes, A. (1969) Transcription and translation in the lactose operon ofEscherichia coli studied by in vivo kinetics’, Prog. Biophys. Mol. Biol., 19, 201–236.

    Google Scholar 

  • Miller, J.H. and Reznikoff, W.S. (eds.) (1980) The Operon, 2nd edn ( Cold Spring Harbor Laboratory, New York ).

    Google Scholar 

  • Pastan, I. and Adhya, S. (1976) Cyclic adenosine 5’-monophosphate in Escherichia coli’, Bacterial. Rev., 40, 527–551.

    Google Scholar 

  • Siebenlist, U., Simpson, R.B. and Gilbert, W. (1980) E. coli RNA polymerase interacts homologously with two different promoters’, Cell, 20, 269–281.

    Google Scholar 

Attenuator-Controlled Operons: The Tryptophan System

  • Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C.L., Squires, C. and Yanofsky, C. (1975) New features of the regulation of the tryptophan operon’, Science, 189, 22–26.

    Article  Google Scholar 

  • Borer, P.N., Dengler, B., Tinoco, I. and Uhlenbeck, O.C. (1974) Stability of ribonucleic acid double-stranded helices’, J. Mol. Biol., 86, 843–853.

    Article  Google Scholar 

  • Crawford, I.P. (1975) Gene rearrangements in the evolution of the tryptophan synthetic pathway’, Bacterial Rev., 39, 87–120.

    Google Scholar 

  • Crawford, I.P. and Stauffer, G.V. (1980) Regulation of tryptophan biosynthesis’, Ann. Rev. Biochem., 49, 163–195.

    Article  Google Scholar 

  • Platt, T. (1978) Regulation of gene expression in the tryptophan operon ofEscherichia coli’, in J.H. Miller and W.S. Reznikoff(eds.), The Operon ( Cold Spring Harbor Laboratory, New York ), pp. 263–302.

    Google Scholar 

  • Platt, T. (1981) Termination of transcription and its regulation in the tryptophan operon of E. coli’, Cell, 24, 10–23.

    Google Scholar 

  • Umbarger, H.E. (1978) Amino acid biosynthesis and its regulation’, Ann. Rev. Biochem., 47, 533–606.

    Article  Google Scholar 

  • Yanofsky, C. (1981) Attenuation in the control of expression of bacterial operons’, Nature, 289, 751–758.

    Article  Google Scholar 

Multivalent Control of Transcriptional-Translational Operons

  • Abelson, J. (1979) RNA processing and the intervening sequence problem’, Ann. Rev. Biochem., 48, 1035–1069.

    Article  Google Scholar 

  • Altman, S. (1978) Biosynthesis of tRNA’, in S. Altman (ed.), Transfer RNA (The M.I.T. Press, Cambridge ), pp. 48–77.

    Google Scholar 

  • Isono, K. (1980) Genetics of ribosomal proteins and their modifying and processing enzymes in Escherichia coli’, in G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura (eds.), Ribosomes: Structure, Function and Genetics ( University Park Press, Baltimore ), pp. 641–669.

    Google Scholar 

  • Nomura, M., Morgan, E.A. and Jaskunas, S.R. (1977) Genetics of bacterial ribosomes’, Ann. Rev. Genet, 11, 297–347.

    Article  Google Scholar 

  • Yura, T. and Ishihama, A. (1979) Genetics of bacterial RNA polymerases’, A nn. Rev. Genet., 13, 59–97.

    Article  Google Scholar 

  • Gausing, K. (1980) Regulation of ribosome biosynthesis inE. coli’, in G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura (eds.), Ribosomes: Structure, Function and Genetics ( University Park Press, Baltimore ), pp. 693–718.

    Google Scholar 

  • Nierlich, D.P. (1978) Regulation of bacterial growth, RNA, and protein synthesis’, Ann. Rev. Microbiol, 32, 393–432.

    Article  Google Scholar 

  • Travers, A. (1976) RNA polymerase specificity and the control of growth’,Nature, 263, 641–646.

    Google Scholar 

  • Cashel, M. (1975) Regulation of bacterial ppGpp and pppGpp’, Ann. Rev. Microbiol, 29, 301–318.

    Google Scholar 

  • Gallant, J.A. (1979) Stringent control in E. coli’, Ann. Rev. Genet., 13, 393–445.

    Article  Google Scholar 

  • Kjeldaard, N.O. (1979) Control mechanisms of the formation of ribosomal RNA and transfer RNA and the synthesis of guanosine tetraphosphate’, in J.E. Celis and J.D. Smith (eds.), Nonsense

    Google Scholar 

  • Mutations and tRNA Suppressors (Academic Press, London), pp. 191–205.

    Google Scholar 

  • Richter, D. (1980) In vitro synthesis and decay of guanosine 3’, 5’-bis (diphosphate) (ppGpp)’, in G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura(eds.),Ribosomes: Structure, Function and Genetics ( University Park Press, Baltimore ), pp. 743–765.

    Google Scholar 

  • Friesen, J.D., Fiil, N.P., Dennis, P.P., Downing, W.L., An, G. and Holowachuk, E. (1980) Biosynthetic regulation ofrpU, rp1L, rpoB and rpoC inEscherichia coli’, in G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura (eds.), Ribosomes: Structure, Function and Genetics ( University Park Press, Baltimore ), pp. 719–742.

    Google Scholar 

  • Nomura, M. and Post, L.E. (1980) Organisation of ribosomal genes and regulation of their expression inEscherichia coli’, in G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura (eds.), Ribosomes:: Structure, Function and Genetics ( University Park Press, Baltimore ), pp. 671–691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Robert E. Glass

About this chapter

Cite this chapter

Glass, R.E. (1982). Control of Bacterial Gene Expression. In: Gene Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6689-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6689-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7099-0082-5

  • Online ISBN: 978-1-4684-6689-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics