Skip to main content

Reactions of DNA

  • Chapter
Gene Function
  • 81 Accesses

Abstract

The bacterial genome encodes about one to two thousand different protein species, the majority of which are likely to be enzymes rather than structural components. Of the numerous cytoplasmic processes carried out by these biological catalysts, those that involve nucleic acid, in particular DNA, are crucial for cellular survival and, in the long term, for preservation of genetic information. Thus, although perturbation of a biosynthetic reaction at the transcriptional or translational level may result in auxotrophy, such an effect is phenotypic (rather than genotypic) since it is compensated by de novo RNA and protein production once the block is removed. When a change occurs at the level of DNA, itself, it is heritable and will be passed on to all progeny cells (unless otherwise repaired). Reactions of DNA are, therefore, limited in the present context to those that directly affect the genetic material — the breaking and making of internucleotide bonds or the modification of DNA nucleotides — and not the passive use of DNA as a template, as in transcription (Chapter 2). These processes, DNA replication, recombination and repair (mutation has been discussed in Chapter 3), have many gene functions in common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

DNA Replication

  • Kornberg, A. (1980) DNA Replication ( Freeman, San Francisco).

    Google Scholar 

  • Champoux, J.J. (1978) ‘Proteins that affect DNA conformation’, Ann. Rev. Biochem., 47, 449–479.

    Article  Google Scholar 

  • Cozzarelli, N.R. (1980) ‘DNA gyrase and supercoiling’, Science, 207, 953–960.

    Article  Google Scholar 

  • Geider, K. (1976) ‘Molecular aspects of DNA replication in Escherichia coli systems’, Curr. Topics Microbio!. Immunol., 74, 55–112.

    Google Scholar 

  • Gross, J.D. (1972) ‘DNA replication in bacteria’, Curr. Topics Microbio!. Immunol., 57, 39–74.

    Article  Google Scholar 

  • Lehman, I.R (1974) ‘DNA ligase: Structure, mechanism and function’, Science, 186, 790–797.

    Article  Google Scholar 

  • Lehman, I.R. and Uyemura, D.G. (1976) ‘DNA polymerase I: Essential replication enzyme’, Science, 193, 963–969.

    Article  Google Scholar 

  • Wechsler, J.A. (1978) ‘The genetics ofE. coli DNA replication’, in I. Molineux and M. Kohiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 49–70.

    Google Scholar 

  • Widmer, S.H. (1978) ‘DNA replication proteins of Escherichia coli’, Ann. Rev. Biochem., 47, 1163–1191.

    Article  Google Scholar 

  • Alberts, B.A. and Sternglanz, R (1977) ‘Recent excitement in the DNA replication problem’, Nature, 269, 655–661.

    Article  Google Scholar 

  • Cairns, J. (1963) ‘The chromosome ofEscherichia coli’, Cold Spring HarborSymp. Quant Biol., 28, 43–46.

    Article  Google Scholar 

  • Kolter, R. and Helinski, D.R. (1979) ‘Regulation of initiation of DNA replication’, Ann. Rev. Genet, 13, 355–391.

    Article  Google Scholar 

  • Ogawa, T. and Okazaki, T. (1980) ‘Discontinuous replication’, Ann. Rev. Biochem., 49, 421–457.

    Article  Google Scholar 

  • Tomizawa, J. and Selzer, G. (1979) ‘Initiation of DNA synthesis inEscherichia coli, Ann. Rev. Biochem., 49, 999–1034.

    Article  Google Scholar 

  • Zechel, K. (1978) ‘Initiation of DNA synthesis by RNA’, Curr. Topics Microbiol. Immunol., 82, 71–112.

    Article  Google Scholar 

  • Pettijohn, D.E. (1976) ‘Prokaryotic DNA in nucleoid structure’, CRC Crit. Rev. Biochem., 4, 175–202.

    Article  Google Scholar 

  • Cooper, S. and Helmstetter, C.E. (1968) ‘Chromosome replication and the division cycle of Escherichia coli B/r’, J. MoL Biol., 31, 519–540.

    Article  Google Scholar 

  • Donachie, W.D., Jones, N.C. and Teather, R. (1973) ‘The bacterial cell cycle’, Symp. Soc. Gen. Microbiol., 23, 9–44.

    Google Scholar 

  • Donachie, W.D. (1979) ‘The cell cycle of Escherichia coli’, in J.H. Parish (ed.), Developmental Biology of Prokayotes ( Blackwell, Oxford ), pp. 11–35.

    Google Scholar 

  • Helmstetter, C.E., Pierucci, O., Weinberger, M., Holmes, M. and Tang, M.-S. (1979) ‘Control of cell division’, in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria, VII: Mechanisms of Adaptation ( Academic Press, New York ), pp. 517–579.

    Google Scholar 

  • Jacob, F., Brenner, S. and Cuzin, F. (1963) ‘On the regulation of DNA replication in bacteria’, Cold Spring Harbor Symp. Quant. Biot., 28, 329–347.

    Article  Google Scholar 

  • Koch, A.L. (1977) ‘Does the initiation of chromosome replication regulate cell division?’, Adv. Microb. PhysioL, 16, 49–98.

    Article  Google Scholar 

  • Lark, K.G. (1979) ‘Some aspects of the regulation of DNA replication in Escherichia coli’, in R.F. Goldberger (ed.), Biological Regulation and Development, I: Gene Expression ( Plenum Press, New York ), pp. 201–217.

    Google Scholar 

  • Pritchard, R.H., Barth, P.T. and Collins, J. (1969) ‘Control of DNA synthesis in bacteria’, Symp. Soc. Gen. Microbiol., 19, 263–298.

    Google Scholar 

  • Pritchard, R.H. (1978) ‘Control of DNA replication in bacteria’, in I. Molineux and M. Kihiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 1–26.

    Google Scholar 

  • Cozzarelli, N.R. (1977) ‘The mechanism of action of inhibitors of DNA synthesis’, Ann. Rev. Biochem., 46, 641–668.

    Article  Google Scholar 

  • Sarin, P.S. and Gallo, R.C. (eds.) (1980) Inhibitors of DNA and RNA Polymerases ( Pergamon Press, New York ).

    Google Scholar 

  • Rowbury, R.J. (1977) ‘Bacterial plasmids with particular reference to their replication and transfer properties’, Prog. Biophys. Molec. Biol., 31, 271–317.

    Article  Google Scholar 

  • Rownd, R.H. (1978) ‘Plasmid replication’, in I. Molineux and M. Kohiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 751–772.

    Google Scholar 

  • Staudenbauer, W.L. (1978) ‘Structure and replication of the colicin El plasmid’, Curr. Topics. Microbiol. Immunol., 83, 93–156.

    Article  Google Scholar 

  • Denhardt, D.T. and Hours, C. (1978) ‘The present status of OX174 replication in vivo’, in I. Molineux and M. Kohiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 693–704.

    Google Scholar 

  • Hurwitz, J. (1979) ‘Analysis of in vitro replication of different DNAs’, CRC Crit Rev. Biochem., 7, 45–74.

    Article  Google Scholar 

  • Kornberg, A. (1979) ‘The enzymatic replication of DNA’, CRC Crit Rev. Biochem., 7, 23–43.

    Article  Google Scholar 

Genetic Recombination

  • Clark, A.J. (1971) ‘Toward a metabolic interpretation of genetic recombination of E. coli and its phages’, Ann. Rev. Microbiol., 25, 437–464.

    Article  Google Scholar 

  • Eisenstark, A. (1977) ‘Genetic recombination in bacteria’, Ann. Rev. Genet, 11, 369–396.

    Article  Google Scholar 

  • Gudas, L.J. and Pardee, A.B. (1975) ‘Model for regulation of Escherichia coli DNA repair functions’, Proc. Nat. Acad. Sci. USA, 72, 2330–2334.

    Article  Google Scholar 

  • Clark, A.J. (1973) ‘Recombinant deficient mutants ofE. coli and otherbacteria’, Ann. Rev. Genet, 7, 67–86.

    Article  Google Scholar 

  • Chipchase, M. (1976) ‘Recombination by strand assimilation and strand crossover’, J. Theor. Biol., 57, 249–279.

    Article  Google Scholar 

  • Fox, M.S. (1978) ‘Some features of genetic recombination in prokaryotes’, Ann. Rev. Genet., 12, 47–68.

    Article  Google Scholar 

  • Hotchkiss, RD. (1974) ‘Models of genetic recombination’, Ann. Rev. Microbiol., 28, 445–468.

    Article  Google Scholar 

  • Low, K.B. and Porter, D.D. (1978) ‘Modes of gene transfer and recombination in bacteria’, Ann. Rev. Genet., 12, 249–287.

    Article  Google Scholar 

  • Radding, C.M. (1978) ‘Genetic recombination: Strand transfer and mismatch repair’, Ann. Rev. Biochem., 47, 847–880.

    Article  Google Scholar 

  • Stadler, D.R. (1973) ‘The mechanism of intragenic recombination’, Ann. Rev. Genet., 7, 113–127.

    Article  Google Scholar 

  • Stahl, F.W. (1979) ‘Special sites in generalised recombination’, Ann. Rev. Genet., 13, 7–24.

    Article  Google Scholar 

  • Stahl, F.W. (1979) Genetic Recombination: Thinking About it in Phage and Fungi ( Freeman, San Francisco).

    Google Scholar 

  • Bukhari, A.I. (1976) ‘Bacteriophage Mu as a transposition element’, Ann. Rev. Genet., 10, 389–412.

    Article  Google Scholar 

  • Bukhari, A.I., Shapiro, J.A. and Adhya, S.L. (eds.) (1977) DNA Insertion Elements, Plasmids and Episomes ( Cold Spring Harbor Laboratory, New York ).

    Google Scholar 

  • Calos, M.P. and Miller, J.H. (1980) ‘Transposable elements’, Cell, 20, 579–595.

    Article  Google Scholar 

  • Grindley, N.D.F. and Sherratt, D.J. (1978) ‘Sequence analysis at IS1 insertion sites: Models for transposition’, Cold Spring Harbor Symp. Quant Biol., 43, 1257–1261.

    Article  Google Scholar 

  • Kleckner, N. (1977) ‘Translocatable elements in prokaryotes’, Cell, 11, 11–23.

    Article  Google Scholar 

  • Schwesinger, M. (1977) ‘Additive recombination in bacteria’, Bacteriol. Rev., 41, 872–902.

    Google Scholar 

  • Shapiro, J.A. (1979) ‘Molecular models for the transposition and replication of bacteriophage Mu and other transposable elements’, Proc. Nat. Acad. Sci. USA, 76, 1933–1937.

    Article  Google Scholar 

  • Starlinger, P. and Saedler, H. (1976) ‘IS-Elements in microorganisms’, Curr. Topics MicrobioL ImmunoL, 75, 112–152.

    Google Scholar 

  • Starlinger, P. (1977) ‘DNA rearrangements in prokaryotes’, Ann. Rev. Genet, 11, 103–126.

    Article  Google Scholar 

  • Starlinger, P. (1980) ‘Transposition’, Plasmid, 3, 241–259.

    Article  Google Scholar 

  • Weisberg, R.A. and Adhya, S. (1977) ‘Illegitimate recombination in bacteria and bacteriophage’, Ann. Rev. Genet., 11, 451–473.

    Article  Google Scholar 

  • Anderson, R.P. and Roth, J.R. (1977) ‘Tandem genetic duplications in phage and bacteria’, Ann. Rev. Microbiol., 31, 473–505.

    Article  Google Scholar 

  • Franklin, N.C. (1971) ‘Illegitimate recombination’, in A.D. Hershey (ed.), The Bacteriophage Lambda ( Cold Spring Harbor Laboratory, New York ), pp. 175–194.

    Google Scholar 

  • Cohen, S.N. (1976) ‘Transposable genetic elements and plasmid evolution’, Nature, 263, 731–738.

    Article  Google Scholar 

  • Nevers, P. and Saedler, H. (1977) ‘Transposable genetic elements as agents of gene instability and chromosomal rearrangements’, Nature, 268, 109–115.

    Article  Google Scholar 

  • Reanney, D.C. (1977) ‘Genetic engineering as an adaptive strategy’, Brookhaven Symp., 29, 248–271.

    Google Scholar 

  • Reanney, D.C. (1978) ‘Coupled evolution: Adaptive interactions among the genomes ofplasmids, viruses and cells’, Int. Rev. Cytol., suppl. 8, 1–68.

    Article  Google Scholar 

  • Riley, M. and Anilionis, A. (1978) ‘Evolution of the bacterial genome’, Ann. Rev. Microbiol, 32, 519–560.

    Article  Google Scholar 

  • Sanderson, K.E. (1976) ‘Genetic relatedness in the family Enterobacteriaceae’, Ann. Rev. Microbiol, 30, 327–349.

    Article  Google Scholar 

  • Sparrow, A.H. and Nauman, A.F. (1976) ‘Evolution of genome size by DNA doublings’, Science, 192, 524–529.

    Article  Google Scholar 

DNA Repair

  • Friedberg, E.C. (1975) ‘Dark repair in bacteriophage systems’, in P.C. Hanawalt and R.B. Setlow (eds.), Molecular Mechanisms for DNA Repair ( Plenum Press, New York ), pp. 125–133.

    Google Scholar 

  • Lindahl, T. (1979) ‘DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair’, Prog. Nucl. Acid Res. Molec. Biol, 22, 135–192.

    Article  Google Scholar 

  • Bernstein, C. (1981) ‘Deoxyribonucleic acid repair in bacteriophage’, Microbiol. Rev., 45, 72–98.

    Google Scholar 

  • Hanawalt, P.C., Cooper, P.K., Ganesan, A.K. and Smith, C.A. (1979) ‘DNA repair in bacteria and mammalian cells’, Ann. Rev. Biochem., 48, 783–836.

    Article  Google Scholar 

  • Grossman, L., Braun, A., Feldberg, R. and Mahler, I. (1975) ‘Enzymatic repairofDNA’, Ann. Rev. Biochem., 44, 19–43.

    Article  Google Scholar 

  • Lehman, A.R. and Bridges, B.A. (1977) ‘DNA repair’, in P.N. Campbell and G.D. Greville (eds.), Essays in Biochemistry, 13 ( Academic Press, London ), pp. 71–119.

    Google Scholar 

  • Moseley, B.E.B. and Williams, E. (1977) ‘Repair of damaged DNA in bacteria’, Adv. Microbiol. Physiol., 16, 99–156.

    Article  Google Scholar 

  • Sutherland, B.M. (1978) ‘Photoreactivation in mammalian cells’, Int Rev. Cytol., suppl. 8, 301–334.

    Article  Google Scholar 

  • Witkin, E.M. (1976) ‘Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli’, Bacteriol. Rev., 40, 869–907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Robert E. Glass

About this chapter

Cite this chapter

Glass, R.E. (1982). Reactions of DNA. In: Gene Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6689-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6689-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7099-0082-5

  • Online ISBN: 978-1-4684-6689-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics